Share:
Share this content in WeChat
X
Review
MRI characteristics of neurological complications related to tumor therapy
HE Jiaqi  LIAO Weihua 

Cite this article as: HE J Q, LIAO W H. MRI characteristics of neurological complications related to tumor therapy[J]. Chin J Magn Reson Imaging, 2023, 14(11): 170-176. DOI:10.12015/issn.1674-8034.2023.11.029.


[Abstract] Treatment of tumors inevitably produces both central and peripheral nervous system complications, and the associated complications have a cumulative effect in time and dose. Therefore, early identification and intervention are particularly important to minimize the neurological damage of tumor treatment. This article systematically reviews the possible neurological complications of chemotherapy, radiotherapy and immunotherapy, the main treatments for tumor, and their MRI characteristics, which can help guide the early diagnosis of the neurotoxicity and explore the individualized tumor treatment plans, so as to improve the quality of life of the long-term tumor survivors.
[Keywords] chemotherapy;radiotherapy;immunotherapy;neurotoxicity;magnetic resonance imaging

HE Jiaqi1   LIAO Weihua1, 2*  

1 Department of Radiology, Xiangya Hospital, Central South University, Changsha 410008, China

2 National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China

Corresponding author: LIAO W H, E-mail: ouwenliao@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS National Natural Science Foundation of China (No. 82071894).
Received  2023-06-17
Accepted  2023-11-04
DOI: 10.12015/issn.1674-8034.2023.11.029
Cite this article as: HE J Q, LIAO W H. MRI characteristics of neurological complications related to tumor therapy[J]. Chin J Magn Reson Imaging, 2023, 14(11): 170-176. DOI:10.12015/issn.1674-8034.2023.11.029.

[1]
STAFF N P, GRISOLD A, GRISOLD W, et al. Chemotherapy-induced peripheral neuropathy: A current review: CIPN[J]. Ann Neurol, 2017, 81(6): 772-781. DOI: 10.1002/ana.24951.
[2]
DESFORGES A D, HEBERT C M, SPENCE A L, et al. Treatment and diagnosis of chemotherapy-induced peripheral neuropathy: An update[J/OL]. Biomed Pharmacother, 2022, 147: 112671 [2023-06-17]. https://doi.org/10.1016/j.biopha.2022.112671. DOI: 10.1016/j.biopha.2022.112671.
[3]
APOSTOLIDIS L, SCHWARZ D, XIA A, et al. Dorsal root ganglia hypertrophy as in vivo correlate of oxaliplatin-induced polyneuropathy[J/OL]. PLoS One, 2017, 12(8): e0183845 [2023-06-17]. https://doi.org/10.1371/journal.pone.0183845. DOI: 10.1371/journal.pone.0183845.
[4]
GIMBER L H, GARLAND L, KRUPINSKI E A, et al. Diffusion tensor imaging of the ankle as a possible predictor of chemotherapy induced peripheral neuropathy: Pilot study[J]. Curr Probl Diagn Radiol, 2019, 48(2): 121-126. DOI: 10.1067/j.cpradiol.2017.12.012.
[5]
CHALASANI P, TALJANOVIC M, SEGAR J, et al. Diffuse tensor imaging of lower extremities: a novel MR imaging technique for chemotherapy-induced peripheral neuropathy[J]. Breast Cancer Res Treat, 2020, 184(3): 771-778. DOI: 10.1007/s10549-020-05897-8.
[6]
OMRAN M, BELCHER E K, MOHILE N A, et al. Review of the role of the brain in chemotherapy-induced peripheral neuropathy[J/OL]. Front Mol Biosci, 2021, 8: 693133 [2023-06-17]. https://doi.org/10.3389/fmolb.2021.693133. DOI: 10.3389/fmolb.2021.693133.
[7]
NUDELMAN K N H, MCDONALD B C, WANG Y, et al. Cerebral perfusion and gray matter changes associated with chemotherapy-induced peripheral neuropathy[J]. J Clin Oncol, 2016, 34(7): 677-683. DOI: 10.1200/JCO.2015.62.1276.
[8]
LY K N I, ARRILLAGA-ROMANY I C. Neurologic complications of systemic anticancer therapy[J]. Neurol Clin, 2018, 36(3): 627-651. DOI: 10.1016/j.ncl.2018.04.013.
[9]
FEIGE J, KLAUSNER F, PFAFF J A R, et al. Stroke-like presentation of acute toxic leukoencephalopathy due to capecitabine treatment with extensive intramyelinic edema[J]. Chronic Dis Transl Med, 2023, 9(3): 258-262. DOI: 10.1002/cdt3.72.
[10]
OBADIA M, LECLERCQ D, WASSERMAN J, et al. Capecitabine-induced acute toxic leukoencephalopathy[J]. Neurotoxicology, 2017, 62: 1-5. DOI: 10.1016/j.neuro.2017.05.001.
[11]
PERRAIN V, BIHAN K, BOMPAIRE F, et al. Leukoencephalopathy with transient splenial lesions related to 5‐fluorouracil or capecitabine[J]. Eur J Neurol, 2021, 28(7): 2396-2402. DOI: 10.1111/ene.14857.
[12]
OZTURK K, RYKKEN J, MCKINNEY A M. Pediatric acute toxic leukoencephalopathy: Prediction of the clinical outcome by FLAIR and DWI for various etiologies[J]. AJNR Am J Neuroradiol, 2020, 41(8): 1517-1524. DOI: 10.3174/ajnr.A6624.
[13]
EL-HAKAM L M, RAMOCKI M B, RIVIELLO J J, et al. Hyperperfusion on magnetic resonance imaging in acute chemotherapy-related leukoencephalopathy[J]. J Child Neurol, 2010, 25(6): 776-779. DOI: 10.1177/0883073809346349.
[14]
BOUGEA A, VOSKOU P, KILIDIREAS C, et al. Capecitabine induced multifocal leukoencephalopathy: Do we have always to switch off the chemotherapy?[J/OL] Case Rep Oncol Med, 2016, 2016: 2408269 [2023-06-17]. https://doi.org/10.1155/2016/2408269. DOI: 10.1155/2016/2408269.
[15]
GIL I, SERRAZINA F, PINTO M, et al. Posterior reversible encephalopathy syndrome associated with the use of chemotherapeutic agents: a rare complication after treatment with vinorelbine[J/OL]. BMJ Case Reports, 2020, 13(2): e229319 [2023-06-17]. https://doi.org/10.1136/bcr-2019-229319. DOI: 10.1136/bcr-2019-229319.
[16]
GHALI M G Z, DAVANZO J, LEO M, et al. Posterior reversible encephalopathy syndrome in pediatric patients: pathophysiology, diagnosis, and management[J]. Leuk Lymphoma, 2019, 60(10): 2365-2372. DOI: 10.1080/10428194.2019.1594210.
[17]
BARTYNSKI W S. Posterior reversible encephalopathy syndrome, Part 1: Fundamental imaging and clinical features[J]. AJNR Am J Neuroradiol, 2008, 29(6): 1036-1042. DOI: 10.3174/ajnr.A0928.
[18]
KAUR G, ASHRAF I, PECK M M, et al. Chemotherapy and immunosuppressant therapy-induced posterior reversible encephalopathy syndrome[J/OL]. Cureus, 2020, 12(10): e11163 [2023-06-17]. https://doi.org/10.7759/cureus.11163. DOI: 10.7759/cureus.11163.
[19]
ABHISHEK M, RENUKA A, UJJWAL A, et al. Atypical posterior reversible encephalopathy syndrome associated with Lenvatinib therapy in a patient with metastatic thyroid cancer-A case report[J/OL]. Cancer Reports (Hoboken), 2022, 5(9): e1605 [2023-06-17]. https://doi.org/10.1002/cnr2.1605. DOI: 10.1002/cnr2.1605.
[20]
FAZELI S, NOORBAKHSH A, IMBESI S G, et al. Cerebral perfusion in posterior reversible encephalopathy syndrome measured with arterial spin labeling MRI[J/OL]. Neuroimage Clin, 2022, 35: 103017 [2023-06-17]. https://doi.org/10.1016/j.nicl.2022.103017. DOI: 10.1016/j.nicl.2022.103017.
[21]
ALI K, KARAN A, BISWAH S, et al. Posterior reversible encephalopathy syndrome: Tips for diagnosis and treatment[J/OL]. Cureus, 2021, 13(3): 14087 [2023-06-17]. https://doi.org/10.7759/cureus.14087. DOI: 10.7759/cureus.
[22]
CHIU Y H, YANG E, CHEN Y C. Ascending myelopathy after intrathecal methotrexate[J/OL]. Kaohsiung J Med Sci, 2021, 37(11): 1018-1019. DOI: 10.1002/kjm2.12427.
[23]
PINNIX C C, CHI L, JABBOUR E J, et al. Dorsal column myelopathy after intrathecal chemotherapy for leukemia[J]. Am J Hematol, 2017, 92(2): 155-160. DOI: 10.1002/ajh.24611.
[24]
BIDIKIAN A H, BAZARBACHI A, HOURANI R, et al. Intrathecal methotrexate induced myelopathy, rare yet serious complication: A case report and review of the literature[J/OL]. Curr Res Transl Med, 2021, 69(3): 103296 [2023-06-17]. https://doi.org/10.1016/j.retram.2021.103296. DOI: 10.1016/j.retram.2021.103296.
[25]
JOSEPH P J, REYES M R. Dorsal column myelopathy following intrathecal chemotherapy for acute lymphoblastic leukemia[J]. J Spinal Cord Med, 2014, 37(1): 107-113. DOI: 10.1179/2045772312Y.0000000081.
[26]
FUKUDA Y, TAKAHASHI S, NAKAMURA M, et al. Radiation myelopathy caused by palliative radiotherapy and intrathecal methotrexate[J]. Case Rep Oncol, 2022, 15(2): 674-681. DOI: 10.1159/000524825.
[27]
TERZIEV R, PSIMARAS D, MARIE Y, et al. Cumulative incidence and risk factors for radiation induced leukoencephalopathy in high grade glioma long term survivors[J/OL]. Sci Rep, 2021, 11(1): 10176 [2023-06-17]. https://doi.org/10.1038/s41598-021-89216-1. DOI: 10.1038/s41598-021-89216-1.
[28]
CARR C M, BENSON J C, DELONE D R, et al. Intracranial long-term complications of radiation therapy: an image-based review[J]. Neuroradiology, 2021, 63(4): 471-482. DOI: 10.1007/s00234-020-02621-7.
[29]
KŁOS J, VAN LAAR P J, SINNIGE P F, et al. Quantifying effects of radiotherapy-induced microvascular injury; review of established and emerging brain MRI techniques[J]. Radiother Oncol, 2019, 140: 41-53. DOI: 10.1016/j.radonc.2019.05.020.
[30]
ALBANO D, BENENATI M, BRUNO A,, et al. Imaging side effects and complications of chemotherapy and radiation therapy: a pictorial review from head to toe[J/OL]. Insights Imaging, 2021, 12(1): 76 [2023-06-17]. https://doi.org/10.1186/s13244-021-01017-2. DOI: 10.1186/s13244-021-01017-2.
[31]
NICHELLI L, CASAGRANDA S. Current emerging MRI tools for radionecrosis and pseudoprogression diagnosis[J]. Curr Opin Oncol, 2021, 33(6): 597-607. DOI: 10.1097/CCO.0000000000000793.
[32]
WEINBERG B D, KURUVA M, SHIM H, et al. Clinical applications of magnetic resonance spectroscopy in brain tumors: From diagnosis to treatment[J]. Radiol Clin North Am, 2021, 59(3): 349-362. DOI: 10.1016/j.rcl.2021.01.004.
[33]
KIM P H, SUH C H, KIM H S, et al. Immune checkpoint inhibitor therapy may increase the incidence of treatment-related necrosis after stereotactic radiosurgery for brain metastases: a systematic review and meta-analysis[J]. Eur Radiol, 2021, 31(6): 4114-4129. DOI: 10.1007/s00330-020-07514-0.
[34]
ALOMARI A K, COHEN J, VORTMEYER A O, et al. Possible interaction of anti-PD-1 therapy with the effects of radiosurgery on brain metastases[J]. Cancer Immunol Res, 2016, 4(6): 481-487. DOI: 10.1158/2326-6066.CIR-15-0238.
[35]
MORRISON M A, HESS C P, CLARKE J L, et al. Risk factors of radiotherapy-induced cerebral microbleeds and serial analysis of their size compared with white matter changes: A 7T MRI study in 113 adult patients with brain tumors[J]. J Magn Reson Imaging, 2019, 50(3): 868-877. DOI: 10.1002/jmri.26651.
[36]
MURPHY E S, XIE H, MERCHANT T E, et al. Review of cranial radiotherapy-induced vasculopathy[J]. J Neurooncol, 2015, 122(3): 421-429. DOI: 10.1007/s11060-015-1732-2.
[37]
KIM T H, YUN T J, PARK C K, et al. Combined use of susceptibility weighted magnetic resonance imaging sequences and dynamic susceptibility contrast perfusion weighted imaging to improve the accuracy of the differential diagnosis of recurrence and radionecrosis in high-grade glioma patients[J/OL]. Oncotarget, 2017, 8(12): 20340-20353 [2023-06-17]. https://www.oncotarget.com/article/13050/text/. DOI: 10.18632/oncotarget.13050.
[38]
DORRESTEIJN L D A, KAPPELLE A C, SCHOLZ N M J, et al. Increased carotid wall thickening after radiotherapy on the neck[J]. Eur J Cancer, 2005, 41(7): 1026-1030. DOI: 10.1016/j.ejca.2005.01.020.
[39]
BIJU R D, DOWER A, MOON B G, et al. SMART (stroke-like migraine attacks after radiation therapy) syndrome: A case study with imaging supporting the theory of vascular dysfunction[J/OL]. Am J Case Rep, 2020, 21: e921795 [2023-06-17]. https://doi.org/10.12659/AJCR.921795. DOI: 10.12659/AJCR.921795.
[40]
SINGH T D, HAJEB M, RABINSTEIN A A, et al. SMART syndrome: retrospective review of a rare delayed complication of radiation[J]. Eur J Neurol, 2021, 28(4): 1316-1323. DOI: 10.1111/ene.14632.
[41]
MAUS M V, ALEXANDER S, BISHOP M R, et al. Society for immunotherapy of cancer (SITC) clinical practice guideline on immune effector cell-related adverse events[J/OL]. J Immunother Cancer, 2020, 8(2): e001511 [2023-06-17]. https://doi.org/10.1136/jitc-2020-001511. DOI: 10.1136/jitc-2020-001511.
[42]
FREYER C W, PORTER D L. Cytokine release syndrome and neurotoxicity following CAR T-cell therapy for hematologic malignancies[J]. J Allergy Clin Immunol, 2020, 146(5): 940-948. DOI: 10.1016/j.jaci.2020.07.025.
[43]
KARSCHNIA P, JORDAN J T, FORST D A, et al. Clinical presentation, management, and biomarkers of neurotoxicity after adoptive immunotherapy with CAR T cells[J]. Blood, 2019, 133(20): 2212-2221. DOI: 10.1182/blood-2018-12-893396.
[44]
GUST J, HAY K A, HANAFI L A, et al. Endothelial activation and blood-brain barrier disruption in neurotoxicity after adoptive immunotherapy with CD19 CAR-T cells[J]. Cancer Discov, 2017, 7(12): 1404-1419. DOI: 10.1158/2159-8290.CD-17-0698.
[45]
SANTOMASSO B D, PARK J H, SALLOUM D, et al. Clinical and biological correlates of neurotoxicity associated with CAR T-cell therapy in patients with B-cell acute lymphoblastic leukemia[J]. Cancer Discov, 2018, 8(8): 958-971. DOI: 10.1158/2159-8290.CD-17-1319.
[46]
HAUGH A M, PROBASCO J C, JOHNSON D B. Neurologic complications of immune checkpoint inhibitors[J]. Expert Opin Drug Saf, 2020, 19(4): 479-488. DOI: 10.1080/14740338.2020.1738382.
[47]
Chinese Society of Neuroinfectious Diseases and Cerebrospinal Fluid Cytology. Chinese expert consensus on the diagnosis and management of autoimmune encephalitis (2022 edition)[J]. Chin J Neurol, 2022, 55(9): 931-949. DOI: 10.3760/cma.j.cn113694-20220219-00118.

PREV Research progress of multimodal MRI brain tumor image segmentation methods
NEXT Research and application progresses of artificial intelligence in breast cancer imaging
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn