Share:
Share this content in WeChat
X
Review
Progress of MRI in assessing the efficacy of chemotherapy for colorectal liver metastases
LI Yanyao  HE Yexin 

Cite this article as: LI Y Y, HE Y X. Progress of MRI in assessing the efficacy of chemotherapy for colorectal liver metastases[J]. Chin J Magn Reson Imaging, 2023, 14(11): 183-187. DOI:10.12015/issn.1674-8034.2023.11.031.


[Abstract] Colorectal cancer (CRC) is the third most common malignancy in the world and the leading cause of cancer-related deaths. Liver metastasis is the most common distant metastasis of CRC, which is closely related to poor prognosis. Early and accurate prediction of curative effect is very important for the prognosis of patients. In recent years, there have been some MRI-based methods to evaluate the efficacy, including functional magnetic resonance imaging (fMRI), MRI-based imagomics and so on. This article reviews the advantages and disadvantages of the efficacy evaluation methods for colorectal liver metastasis (CRLM), and describes the application of biomarkers in evaluating the prognosis of CRLM patients, provides a reliable basis for clinical individualized treatment, and provides new ideas for scientific research.
[Keywords] colorectal liver metastasis;biomarkers;chemotherapeutic efficacy;magnetic resonance imaging;functional magnetic resonance imaging;radiomics

LI Yanyao1   HE Yexin2*  

1 Department of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China

2 Department of MRI, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan 030012, China

Corresponding author: HE Y X, E-mail: heyexinty2000@sina.com

Conflicts of interest   None.

Received  2023-06-24
Accepted  2023-10-27
DOI: 10.12015/issn.1674-8034.2023.11.031
Cite this article as: LI Y Y, HE Y X. Progress of MRI in assessing the efficacy of chemotherapy for colorectal liver metastases[J]. Chin J Magn Reson Imaging, 2023, 14(11): 183-187. DOI:10.12015/issn.1674-8034.2023.11.031.

[1]
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
[2]
ZHANG H, LI W H, HU F X, et al. MR texture analysis: potential imaging biomarker for predicting the chemotherapeutic response of patients with colorectal liver metastases[J]. Abdom Radiol (NY), 2019, 44(1): 65-71. DOI: 10.1007/s00261-018-1682-1.
[3]
HAO X J, GU X L, LI H J, et al. The value of Gd-EOB-DTPA enhanced MRI in predicting response of systemic therapy in colorectal liver metastases[J]. J Clin Radiol, 2022, 41(1): 93-99. DOI: 10.13437/j.cnki.jcr.2022.01.019.
[4]
ZHU H B, XU D, ZHANG X Y, et al. Prediction of therapeutic effect to treatment in patients with colorectal liver metastases using functional magnetic resonance imaging and RECIST criteria: a pilot study in comparison between bevacizumab-containing chemotherapy and standard chemotherapy[J]. Ann Surg Oncol, 2022, 29(6): 3938-3949. DOI: 10.1245/s10434-021-11101-y.
[5]
ZHANG H, LI W H, FU C X, et al. Comparison of intravoxel incoherent motion imaging, diffusion kurtosis imaging, and conventional DWI in predicting the chemotherapeutic response of colorectal liver metastases[J/OL]. Eur J Radiol, 2020, 130: 109149 [2023-02-20]. https://doi.org/10.1016/j.ejrad.2020.109149. DOI: 10.1016/j.ejrad.2020.109149.
[6]
BORASCHI P, DONATI F, CERVELLI R, et al. Colorectal liver metastases: ADC as an imaging biomarker of tumor behavior and therapeutic response[J/OL]. Eur J Radiol, 2021, 137: 109609 [2023-02-20]. https://doi.org/10.1016/j.ejrad.2021.109609. DOI: 10.1016/j.ejrad.2021.109609.
[7]
DONATI F, BORASCHI P, PACCIARDI F, et al. 3T diffusion-weighted MRI in the response assessment of colorectal liver metastases after chemotherapy: correlation between ADC value and histological tumour regression grading[J]. Eur J Radiol, 2017, 91: 57-65. DOI: 10.1016/j.ejrad.2017.03.020.
[8]
HOSSEINI-NIK H, FISCHER S E, MOULTON C A, et al. Diffusion-weighted and hepatobiliary phase gadoxetic acid-enhanced quantitative MR imaging for identification of complete pathologic response in colorectal liver metastases after preoperative chemotherapy[J]. Abdom Radiol, 2016, 41(2): 231-238. DOI: 10.1007/s00261-015-0572-z.
[9]
MONIRUJJAMAN M, BATHE O F, MAZURAK V C. Dietary EPA+DHA mitigate hepatic toxicity and modify the oxylipin profile in an animal model of colorectal cancer treated with chemotherapy[J/OL]. Cancers, 2022, 14(22): 5703 [2023-02-20]. https://doi.org/10.3390/cancers14225703. DOI: 10.3390/cancers14225703.
[10]
DONATI F, CIONI D, GUARINO S, et al. Chemotherapy-induced liver injury in patients with colorectal liver metastases: findings from MR imaging[J/OL]. Diagnostics, 2022, 12(4): 867 [2023-02-20]. https://doi.org/10.3390/diagnostics12040867. DOI: 10.3390/diagnostics12040867.
[11]
WANG Q, YE F, MA P Q, et al. Quantified MRI and 25OH-VitD3 can be used as effective biomarkers for patients with neoadjuvant chemotherapy-induced liver injury in CRCLM?[J/OL]. BMC Cancer, 2020, 20(1): 767 [2023-02-20]. https://doi.org/10.1186/s12885-020-07282-6. DOI: 10.1186/s12885-020-07282-6.
[12]
MURATA S, MATSUSHIMA S, SATO Y, et al. Predicting chemotherapeutic response for colorectal liver metastases using relative tumor enhancement of gadoxetic acid disodium-enhanced magnetic resonance imaging[J]. Abdom Radiol, 2018, 43(12): 3301-3306. DOI: 10.1007/s00261-018-1615-z.
[13]
LIU L H, ZHOU G F, LV H, et al. Identifying response in colorectal liver metastases treated with bevacizumab: development of RECIST by combining contrast-enhanced and diffusion-weighted MRI[J]. Eur Radiol, 2021, 31(8): 5640-5649. DOI: 10.1007/s00330-020-07647-2.
[14]
SOBEH T, INBAR Y, APTER S, et al. Diffusion-weighted MRI for predicting and assessing treatment response of liver metastases from CRC-A systematic review and meta-analysis[J/OL]. Eur J Radiol, 2023, 163: 110810 [2023-02-20]. https://doi.org/10.1016/j.ejrad.2023.110810. DOI: 10.1016/j.ejrad.2023.110810.
[15]
WU H T, LI B K, YANG Z K, et al. Intravoxel incoherent motion diffusion-weighted imaging for early assessment of combined anti-angiogenic/chemotherapy for colorectal cancer liver metastases[J]. Quant Imaging Med Surg, 2022, 12(9): 4587-4600. DOI: 10.21037/qims-21-1220.
[16]
RUBBIA-BRANDT L, GIOSTRA E, BREZAULT C, et al. Importance of histological tumor response assessment in predicting the outcome in patients with colorectal liver metastases treated with neo-adjuvant chemotherapy followed by liver surgery[J]. Ann Oncol, 2007, 18(2): 299-304. DOI: 10.1093/annonc/mdl386.
[17]
YU M H, LEE J M, HUR B Y, et al. Gadoxetic acid-enhanced MRI and diffusion-weighted imaging for the detection of colorectal liver metastases after neoadjuvant chemotherapy[J]. Eur Radiol, 2015, 25(8): 2428-2436. DOI: 10.1007/s00330-015-3615-5.
[18]
LIU C X, SHEN Z J, MA H, et al. Gd-BOPTA-enhanced hepatobiliary phase MR imaging can predict the prognosis of patients with acute-on-chronic liver failure[J]. Eur Radiol, 2022, 32(5): 3006-3015. DOI: 10.1007/s00330-021-08440-5.
[19]
HUANG X L, PENG J. Progress of Gd-EOB-DTPA in the diagnosis and evaluation of CRLM[J]. Chin J Magn Reson Imag, 2021, 12(10): 112-114, 124. DOI: 10.12015/issn.1674-8034.2021.10.029.
[20]
HAO X J, GU X L, CAO M, et al. Features of hepatic metastases from colorectal cancer on hepatobiliary phase of gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid (Gd-EOB-DTPA) enhanced MRI[J]. Chin J Med Imag Technol, 2021, 37(9): 1347-1352. DOI: 10.13929/j.issn.1003-3289.2021.09.017.
[21]
WANG X X, WANG Y, ZHANG Z Q, et al. Rim enhancement on hepatobiliary phase of pre-treatment 3.0 T MRI: a potential marker for early chemotherapy response in colorectal liver metastases treated with XELOX[J/OL]. Eur J Radiol, 2021, 143: 109887 [2023-02-20]. https://doi.org/10.1016/j.ejrad.2021.109887. DOI: 10.1016/j.ejrad.2021.109887.
[22]
GU X L, CUI Y, WANG K, et al. Qualitative and quantitative parameters on hepatobiliary phase of gadoxetic acid-enhanced MR imaging for predicting pathological response to preoperative systemic therapy in colorectal liver metastases[J/OL]. Eur J Radiol, 2022, 157: 110572 [2023-09-23]. https://doi.org/10.1016/j.ejrad.2022.110572. DOI: 10.1016/j.ejrad.2022.110572.
[23]
MUADDI H, SILVA S, CHOI W J, et al. When is a ghost really gone? A systematic review and meta-analysis of the accuracy of imaging modalities to predict complete pathological response of colorectal cancer liver metastases after chemotherapy[J]. Ann Surg Oncol, 2021, 28(11): 6805-6813. DOI: 10.1245/s10434-021-09824-z.
[24]
UUTELA A, OVISSI A, HAKKARAINEN A, et al. Treatment response of colorectal cancer liver metastases to neoadjuvant or conversion therapy: a prospective multicentre follow-up study using MRI, diffusion-weighted imaging and 1H-MR spectroscopy compared with histology (subgroup in the RAXO trial)[J/OL]. ESMO Open, 2021, 6(4): 100208 [2023-02-20]. https://doi.org/10.1016/j.esmoop.2021.100208. DOI: 10.1016/j.esmoop.2021.100208.
[25]
SUROV A, PECH M, MEYER H J, et al. Evaluation of pretreatment ADC values as predictors of treatment response to neoadjuvant chemotherapy in patients with breast cancer - a multicenter study[J/OL]. Cancer Imaging, 2022, 22(1): 68 [2023-02-20]. https://doi.org/10.1186/s40644-022-00501-2. DOI: 10.1186/s40644-022-00501-2.
[26]
YANG X, YUAN B R, ZHANG Y D, et al. Quantitative multiparametric MRI as a promising tool for the assessment of early response to neoadjuvant chemotherapy in bladder cancer[J/OL]. Eur J Radiol, 2022, 157: 110587 [2023-02-20]. https://doi.org/10.1016/j.ejrad.2022.110587. DOI: 10.1016/j.ejrad.2022.110587.
[27]
LI J, YAN L L, ZHANG H K, et al. Dynamic contrast-enhanced and diffusion-weighted MR imaging in early prediction of pathologic response to neoadjuvant chemotherapy in locally advanced gastric cancer[J]. Abdom Radiol, 2022, 47(10): 3394-3405. DOI: 10.1007/s00261-022-03623-0.
[28]
PERUCHO J A U, WANG M D, TSE K Y, et al. Association between MRI histogram features and treatment response in locally advanced cervical cancer treated by chemoradiotherapy[J]. Eur Radiol, 2021, 31(3): 1727-1735. DOI: 10.1007/s00330-020-07217-6.
[29]
LU J, LI H M, CAI S Q, et al. Prediction of platinum-based chemotherapy response in advanced high-grade serous ovarian cancer: ADC histogram analysis of primary tumors[J/OL]. Acad Radiol, 2021, 28(3): e77-e85 [2023-02-20]. https://doi.org/10.1016/j.acra.2020.01.024. DOI: 10.1016/j.acra.2020.01.024.
[30]
LIANG H Y, HUANG Y Q, YANG Z X, et al. Potential of MR histogram analyses for prediction of response to chemotherapy in patients with colorectal hepatic metastases[J]. Eur Radiol, 2016, 26(7): 2009-2018. DOI: 10.1007/s00330-015-4043-2.
[31]
XIA X B, WEN L, ZHOU F, et al. Predictive value of DCE-MRI and IVIM-DWI in osteosarcoma patients with neoadjuvant chemotherapy[J/OL]. Front Oncol, 2022, 12: 967450 [2023-02-20]. https://doi.org/10.3389/fonc.2022.967450. DOI: 10.3389/fonc.2022.967450.
[32]
CHIARADIA M, BARANES L, VAN NHIEU J T, et al. Intravoxel incoherent motion (IVIM) MR imaging of colorectal liver metastases: are we only looking at tumor necrosis?[J]. J Magn Reson Imaging, 2014, 39(2): 317-325. DOI: 10.1002/jmri.24172.
[33]
RATA M, KHAN K, COLLINS D J, et al. DCE-MRI is more sensitive than IVIM-DWI for assessing anti-angiogenic treatment-induced changes in colorectal liver metastases[J/OL]. Cancer Imaging, 2021, 21(1): 67 [2023-09-23]. https://doi.org/10.1186/s40644-021-00436-0. DOI: 10.1186/s40644-021-00436-0.
[34]
LI H W, YAN G W, YANG J, et al. Quantitative analysis for detection and grading of hepatocellular carcinoma: comparison of diffusion kurtosis imaging, intravoxel incoherent motion and conventional diffusion-weighted imaging[J/OL]. Oncol Lett, 2022, 24(5): 403 [2023-02-20]. https://doi.org/10.3892/ol.2022.13523. DOI: 10.3892/ol.2022.13523.
[35]
LU W R, YANG X Y, QIU Q, et al. Research progress of diffusion kurtosis imaging in rectal cancer[J]. Int J Med Radiol, 2022, 45(2): 184-188. DOI: 10.19300/j.2022.Z18919.
[36]
LIU Y, ZHANG G M, PENG X Y, et al. Diffusion kurtosis imaging as an imaging biomarker for predicting prognosis in chronic kidney disease patients[J]. Nephrol Dial Transplant, 2022, 37(8): 1451-1460. DOI: 10.1093/ndt/gfab229.
[37]
CAO Y J, YIN J Z, HU M F, et al. Evaluating the renal mild tubulointerstitial damage and renal function in IgAN patients: a comparative study based on diffusion kurtosis imaging and diffusion tensor imaging[J]. Abdom Radiol, 2023, 48(4): 1350-1362. DOI: 10.1007/s00261-023-03822-3.
[38]
ROMPIANESI G, PEGORARO F, CERESA C D, et al. Artificial intelligence in the diagnosis and management of colorectal cancer liver metastases[J]. World J Gastroenterol, 2022, 28(1): 108-122. DOI: 10.3748/wjg.v28.i1.108.
[39]
HEWITT D B, BROWN Z J, PAWLIK T M. The role of biomarkers in the management of colorectal liver metastases[J/OL]. Cancers, 2022, 14(19): 4602 [2023-02-20]. https://doi.org/10.3390/cancers14194602. DOI: 10.3390/cancers14194602.
[40]
QU H, ZHAI H, ZHANG S R, et al. Dynamic radiomics for predicting the efficacy of antiangiogenic therapy in colorectal liver metastases[J/OL]. Front Oncol, 2023, 13: 992096 [2023-09-23]. https://doi.org/10.3389/fonc.2023.992096. DOI: 10.3389/fonc.2023.992096.
[41]
THARMASEELAN H, HERTEL A, TOLLENS F, et al. Identification of CT imaging phenotypes of colorectal liver metastases from radiomics signatures-towards assessment of interlesional tumor heterogeneity[J/OL]. Cancers, 2022, 14(7): 1646 [2023-09-23]. https://pubmed.ncbi.nlm.nih.gov/35406418. DOI: 10.3390/cancers14071646.
[42]
MA Y Q, WEN Y, LIANG H, et al. Magnetic resonance imaging-radiomics evaluation of response to chemotherapy for synchronous liver metastasis of colorectal cancer[J]. World J Gastroenterol, 2021, 27(38): 6465-6475. DOI: 10.3748/wjg.v27.i38.6465.
[43]
SHEN Y, GUAN Z, LIANG H, et al. MRI-based radiomics signature to predict the response of chemotherapy in synchronous liver metastasis of colorectal carcinoma[J]. J Pract Radiol, 2023, 39(3): 416-419, 432. DOI: 10.3969/j.issn.1002-1671.2023.03.018.
[44]
CHEN H J, YAO Y B, GAO J L, et al. Biomakers of colorectal cancer liver metastases: current research[J]. J Colorectal Anal Surg, 2022, 28(1): 19-23. DOI: 10.19668/j.cnki.issn1674-0491.2022.01.005.
[45]
KITSEL Y, COOKE T, SOTIRCHOS V, et al. Colorectal cancer liver metastases: genomics and biomarkers with focus on local therapies[J/OL]. Cancers, 2023, 15(6): 1679 [2023-09-23]. https://doi.org/10.3390/cancers15061679. DOI: 10.3390/cancers15061679.
[46]
GÜLTEKIN M ALI, TÜRK H M, BEŞIROĞLU M, et al. Relationship between KRAS mutation and diffusion weighted imaging in colorectal liver metastases; Preliminary study[J/OL]. Eur J Radiol, 2020, 125: 108895 [2023-02-20]. https://doi.org/10.1016/j.ejrad.2020.108895. DOI: 10.1016/j.ejrad.2020.108895.
[47]
GRANATA V, FUSCO R, RISI C, et al. Diffusion-weighted MRI and diffusion kurtosis imaging to detect RAS mutation in colorectal liver metastasis[J/OL]. Cancers, 2020, 12(9): 2420 [2023-02-20]. https://doi.org/10.3390/cancers12092420. DOI: 10.3390/cancers12092420.
[48]
MA J Q, XIAO L Q, LI X F. Application progress of radiogenomics in the prediction of liver metastasis gene mutations in colorectal cancer[J]. Chin J Magn Reson Imag, 2022, 13(9): 160-162, 170. DOI: 10.12015/issn.1674-8034.2022.09.038.
[49]
TOSI F, MAGNI E, AMATU A, et al. Effect of KRAS and BRAF mutations on survival of metastatic colorectal cancer after liver resection: a systematic review and meta-analysis[J/OL]. Clin Colorectal Cancer, 2017, 16(3): e153-e163 [2023-02-20]. https://doi.org/10.1016/j.clcc.2017.01.004. DOI: 10.1016/j.clcc.2017.01.004.
[50]
WANG P P, LIN C, WANG J, et al. BRAF mutations in colorectal liver metastases: prognostic implications and potential therapeutic strategies[J/OL]. Cancers, 2022, 14(17): 4067 [2023-02-20]. https://doi.org/10.3390/cancers14174067. DOI: 10.3390/cancers14174067.
[51]
AFRĂSÂNIE V A, MARINCA M V, ALEXA-STRATULAT T, et al. KRAS, NRAS, BRAF, HER2 and microsatellite instability in metastatic colorectal cancer - practical implications for the clinician[J]. Radiol Oncol, 2019, 53(3): 265-274. DOI: 10.2478/raon-2019-0033.
[52]
HE P, ZOU Y, QIU J, et al. Pretreatment 18F-FDG PET/CT imaging predicts the KRAS/NRAS/BRAF gene mutational status in colorectal cancer[J/OL]. J Oncol, 2021, 2021: 6687291 [2023-09-23]. https://www.hindawi.com/journals/jo/2021/6687291. DOI: 10.1155/2021/6687291.
[53]
WANG D S, YANG H, LIU X Y, et al. Dynamic monitoring of circulating tumor DNA to predict prognosis and efficacy of adjuvant chemotherapy after resection of colorectal liver metastases[J]. Theranostics, 2021, 11(14): 7018-7028. DOI: 10.7150/thno.59644.
[54]
WANG X Y, ZHANG R, HAN J H, et al. Early circulating tumor DNA dynamics predict neoadjuvant therapy response and recurrence in colorectal liver metastases: a prospective study[J]. Ann Surg Oncol, 2023, 30(8): 5252-5263. DOI: 10.1245/s10434-023-13604-2.
[55]
NAIDOO M, PIERCEY O, TIE J. Circulating tumour DNA and colorectal cancer: the next revolutionary biomarker?[J/OL]. Curr Oncol Rep, 2021, 23(12): 140 [2023-02-20]. https://doi.org/10.1007/s11912-021-01137-4. DOI: 10.1007/s11912-021-01137-4.
[56]
ZHANG Y Y, CHEN S W, WANG P Y, et al. Research progress of conversion therapy in colorectal cancer liver metastases[J]. Chin J Gastrointest Surg, 2021, 24(1): 85-93. DOI: 10.3760/cma.j.cn.441530-20200311-00135.

PREV Research and application progresses of artificial intelligence in breast cancer imaging
NEXT Application and progress of magnetic resonance elastography in kidney and prostate diseases
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn