Share:
Share this content in WeChat
X
Review
Application and progress of magnetic resonance elastography in kidney and prostate diseases
YANG Jiao  WU Hui  GAO Kaihua  HU He  ZHANG Tong 

Cite this article as: YANG J, WU H, GAO K H, et al. Application and progress of magnetic resonance elastography in kidney and prostate diseases[J]. Chin J Magn Reson Imaging, 2023, 14(11): 188-192. DOI:10.12015/issn.1674-8034.2023.11.032.


[Abstract] Magnetic resonance elastography (MRE), as a hot imaging technique for non-invasive evaluation of soft tissue mechanical characteristics, has shown good clinical value in the early diagnosis of renal diseases, monitoring of renal dysfunction, differential diagnosis of benign and malignant renal tumors, and detection , differential diagnosis and preoperative risk assessment of prostate cancer in recent years. This article reviews the imaging principle of MRE and the application of MRE in kidney diseases and prostate diseases at present, aiming to understand the application status and progress of MRE in the above diseases, and to provide reference for the research and development of MRE in related fields in the future.
[Keywords] chronic kidney diseases;transplant kidney;renal tumor;prostate cancer;magnetic resonance elastography;magnetic resonance imaging

YANG Jiao   WU Hui*   GAO Kaihua   HU He   ZHANG Tong  

Department of Radiology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China

Corresponding author: WU H, E-mail: terrywuhui@sina.com

Conflicts of interest   None.

Received  2023-06-28
Accepted  2023-09-25
DOI: 10.12015/issn.1674-8034.2023.11.032
Cite this article as: YANG J, WU H, GAO K H, et al. Application and progress of magnetic resonance elastography in kidney and prostate diseases[J]. Chin J Magn Reson Imaging, 2023, 14(11): 188-192. DOI:10.12015/issn.1674-8034.2023.11.032.

[1]
MELEKOGLU ELLIK Z, IDILMAN I S, KARTAL A, et al. Evaluation of magnetic resonance elastography and transient elastography for liver fibrosis and steatosis assessments in the liver transplant setting[J]. Turk J Gastroenterol, 2022, 33(2): 153-160. DOI: 10.5152/tjg.2022.21705.
[2]
CHEN C Y, LU Y C, CHEN X X, et al. Research progress of magnetic resonance elastography in liver focal lesions[J]. Chin J Magn Reson Imag, 2023, 14(4): 176-180. DOI: 10.12015/issn.1674-8034.2023.04.031.
[3]
PAN Z X, WEN W C, MENG F Q, et al. The reproducibility of liver stiffness from magnetic resonance elastography under confounding factors in patients with chronic liver disease[J]. Chin J Magn Reson Imag, 2022, 13(7): 35-41. DOI: 10.12015/issn.1674-8034.2022.07.007.
[4]
SHI Y, HUO Y L, PAN C, et al. Use of magnetic resonance elastography to gauge meningioma intratumoral consistency and histotype[J/OL]. Neuroimage Clin, 2022, 36: 103173 [2023-07-03]. https://doi.org/10.1016/j.nicl.2022.103173. DOI: 10.1016/j.nicl.2022.103173.
[5]
COELHO A, SOUSA N. Magnetic resonance elastography of the ageing brain in normal and demented populations: a systematic review[J]. Hum Brain Mapp, 2022, 43(13): 4207-4218. DOI: 10.1002/hbm.25891.
[6]
SONG Q K, ZHONG S L, LIU Y Y, et al. MR elastography for evaluation of pathological grade of pancreatic ductal adenocarcinoma[J]. Chin J Magn Reson Imag, 2022, 13(3): 26-30. DOI: 10.12015/issn.1674-8034.2022.03.006.
[7]
SHI S Y, WANG L Q, PENG Z P, et al. Multi-frequency magnetic resonance elastography of the pancreas: measurement reproducibility and variance among healthy volunteers[J/OL]. Gastroenterol Rep, 2022, 10: goac033 [2023-07-03] https://doi.org/10.1093/gastro/goac033. DOI: 10.1093/gastro/goac033.
[8]
PATEL B K, SAMREEN N, ZHOU Y X, et al. MR elastography of the breast: evolution of technique, case examples, and future directions[J/OL]. Clin Breast Cancer, 2021, 21(1): e102-e111 [2023-07-03]. https://doi.org/10.1016/j.clbc.2020.08.005. DOI: 10.1016/j.clbc.2020.08.005.
[9]
PATEL B K, PEPIN K, BRANDT K R, et al. Association of breast cancer risk, density, and stiffness: global tissue stiffness on breast MR elastography (MRE)[J]. Breast Cancer Res Treat, 2022, 194(1): 79-89. DOI: 10.1007/s10549-022-06607-2.
[10]
OBRZUT M, OBRZUT B, ZMUDA M, et al. Uterine leiomyomas: correlation between histologic composition and stiffness via magnetic resonance elastography - a Pilot Study[J]. Ginekol Pol, 2020, 91(7): 373-378. DOI: 10.5603/GP.a2020.0067.
[11]
AVILA F, CARON B, HOSSU G, et al. Magnetic resonance elastography for assessing fibrosis in patients with Crohn's disease: a pilot study[J]. Dig Dis Sci, 2022, 67(9): 4518-4524. DOI: 10.1007/s10620-021-07311-9.
[12]
ELSINGERGY M M, VITERI B, OTERO H J, et al. Imaging fibrosis in pediatric kidney transplantation: a pilot study[J/OL]. Pediatr Transplant, 2023, 27(5): e14540 [2023-08-27]. https://pubmed.ncbi.nlm.nih.gov/37166372/. DOI: 10.1111/petr.14540.
[13]
KREHL K, HAHNDORF J, STOLZENBURG N, et al. Characterization of renal fibrosis in rats with chronic kidney disease by in vivo tomoelastography[J/OL]. NMR Biomed, 2023: e5003 [2023-08-27]. https://pubmed.ncbi.nlm.nih.gov/37455558/. DOI: 10.1002/nbm.5003.
[14]
YANG J Y, QIU B S. The advance of magnetic resonance elastography in tumor diagnosis[J/OL]. Front Oncol, 2021, 11: 722703 [2023-07-03]. https://doi.org/10.3389/fonc.2021.722703. DOI: 10.3389/fonc.2021.722703.
[15]
MANDUCA A, BAYLY P J, EHMAN R L, et al. MR elastography: principles, guidelines, and terminology[J]. Magn Reson Med, 2021, 85(5): 2377-2390. DOI: 10.1002/mrm.28627.
[16]
CHOI S L, LEE E S, KO A, et al. Technical success rates and reliability of spin-echo echo-planar imaging (SE-EPI) MR elastography in patients with chronic liver disease or liver cirrhosis[J]. Eur Radiol, 2020, 30(3): 1730-1737. DOI: 10.1007/s00330-019-06496-y.
[17]
ZHAN C Y, KANNENGIESSER S, CHANDARANA H, et al. MR elastography of liver at 3 Tesla: comparison of gradient-recalled echo (GRE) and spin-echo (SE) echo-planar imaging (EPI) sequences and agreement across stiffness measurements[J]. Abdom Radiol, 2019, 44(5): 1825-1833. DOI: 10.1007/s00261-019-01932-5.
[18]
RUMP J, WARMUTH C, BRAUN J, et al. Phase preparation in steady-state free precession MR elastography[J]. Magn Reson Imaging, 2008, 26(2): 228-235. DOI: 10.1016/j.mri.2007.07.009.
[19]
YOON J W, LEE E S, PARK H J, et al. Comparison of spin-echo echo-planar imaging magnetic resonance elastography with gradient-recalled echo magnetic resonance elastography and their correlation with transient elastography[J]. Diagn Interv Radiol, 2022, 28(4): 294-300. DOI: 10.5152/dir.2022.201014.
[20]
GAO X, MEI C L. Interpretation of guideline for early screening, diagnosis, prevention and treatment of chronic kidney disease(2022 edition)[J]. Chin J Pract Intern Med, 2022, 42(9): 735-739. DOI: 10.19538/j.nk2022090108.
[21]
WANG C, LI S W, ZHONG X, et al. An update on renal fibrosis: from mechanisms to therapeutic strategies with a focus on extracellular vesicles[J]. Kidney Res Clin Pract, 2023, 42(2): 174-187. DOI: 10.23876/j.krcp.22.159.
[22]
PANIZO S, MARTÍNEZ-ARIAS L, ALONSO-MONTES C, et al. Fibrosis in chronic kidney disease: pathogenesis and consequences[J/OL]. Int J Mol Sci, 2021, 22(1): 408 [2023-07-03]. https://doi.org/10.3390/ijms22010408. DOI: 10.3390/ijms22010408.
[23]
GÜVEN A T, IDILMAN I S, CEBRAYILOV C, et al. Evaluation of renal fibrosis in various causes of glomerulonephritis by MR elastography: a clinicopathologic comparative analysis[J]. Abdom Radiol, 2022, 47(1): 288-296. DOI: 10.1007/s00261-021-03296-1.
[24]
ZHANG J, YU Y M, LIU X S, et al. Evaluation of renal fibrosis by mapping histology and magnetic resonance imaging[J]. Kidney Dis, 2021, 7(2): 131-142. DOI: 10.1159/000513332.
[25]
BROWN R S, SUN M R M, STILLMAN I E, et al. The utility of magnetic resonance imaging for noninvasive evaluation of diabetic nephropathy[J]. Nephrol Dial Transplant, 2020, 35(6): 970-978. DOI: 10.1093/ndt/gfz066.
[26]
LANG S T, GUO J, BRUNS A, et al. Multiparametric quantitative MRI for the detection of IgA nephropathy using tomoelastography, DWI, and BOLD imaging[J]. Invest Radiol, 2019, 54(10): 669-674. DOI: 10.1097/RLI.0000000000000585.
[27]
MARTICORENA GARCIA S R, GROSSMANN M, BRUNS A, et al. Tomoelastography paired with T2* magnetic resonance imaging detects lupus nephritis with normal renal function[J]. Invest Radiol, 2019, 54(2): 89-97. DOI: 10.1097/RLI.0000000000000511.
[28]
AJMERA V H, LIU A, SINGH S, et al. Clinical utility of an increase in magnetic resonance elastography in predicting fibrosis progression in nonalcoholic fatty liver disease[J]. Hepatology, 2020, 71(3): 849-860. DOI: 10.1002/hep.30974.
[29]
DEMIRTAŞ D, ÜNAL E, İDILMAN İ S, et al. Magnetic resonance elastography in evaluation of liver fibrosis in children with chronic liver disease[J/OL]. Insights Imaging, 2023, 14(1): 39 [2023-07-03]. https://doi.org/10.1186/s13244-023-01390-0. DOI: 10.1186/s13244-023-01390-0.
[30]
HAN J H, AHN J H, KIM J S. Magnetic resonance elastography for evaluation of renal parenchyma in chronic kidney disease: a pilot study[J]. Radiol Med, 2020, 125(12): 1209-1215. DOI: 10.1007/s11547-020-01210-1.
[31]
SARAN R, ROBINSON B, ABBOTT K C, et al. US renal data system 2018 annual data report: epidemiology of kidney disease in the United States[J]. Am J Kidney Dis, 2019, 73(3Suppl 1): A7-A8. DOI: 10.1053/j.ajkd.2019.01.001.
[32]
BETJES M G H, ROELEN D L, VAN AGTEREN M, et al. Causes of kidney graft failure in a cohort of recipients with a very long-time follow-up after transplantation[J/OL]. Front Med, 2022, 9: 842419 [2023-07-03]. https://pubmed.ncbi.nlm.nih.gov/35733857/. DOI: 10.3389/fmed.2022.842419.
[33]
MARTICORENA GARCIA S R, FISCHER T, DÜRR M, et al. Multifrequency magnetic resonance elastography for the assessment of renal allograft function[J]. Invest Radiol, 2016, 51(9): 591-595. DOI: 10.1097/RLI.0000000000000271.
[34]
SHATIL A S, KIRPALANI A, YOUNUS E, et al. Magnetic resonance elastography-derived stiffness predicts renal function loss and is associated with microvascular inflammation in kidney transplant recipients[J/OL]. Transplant Direct, 2022, 8(6): e1334 [2023-07-03]. https://doi.org/10.1097/TXD.0000000000001334. DOI: 10.1097/TXD.0000000000001334.
[35]
MARTICORENA GARCIA S R, ALTHOFF C E, DÜRR M, et al. Tomoelastography for longitudinal monitoring of viscoelasticity changes in the liver and in renal allografts after direct-acting antiviral treatment in 15 kidney transplant recipients with chronic HCV infection[J/OL]. J Clin Med, 2021, 10(3): 510 [2023-07-03]. https://doi.org/10.3390/jcm10030510. DOI: 10.3390/jcm10030510.
[36]
KIRPALANI A, HASHIM E, LEUNG G, et al. Magnetic resonance elastography to assess fibrosis in kidney allografts[J]. Clin J Am Soc Nephrol, 2017, 12(10): 1671-1679. DOI: 10.2215/CJN.01830217.
[37]
KIM J K, YUEN D A, LEUNG G, et al. Role of magnetic resonance elastography as a noninvasive measurement tool of fibrosis in a renal allograft: a case report[J]. Transplant Proc, 2017, 49(7): 1555-1559. DOI: 10.1016/j.transproceed.2017.04.002.
[38]
CHAUVEAU B, MERVILLE P, SOULABAILLE B, et al. Magnetic resonance elastography as surrogate marker of interstitial fibrosis in kidney transplantation: a prospective study[J]. Kidney360, 2022, 3(11): 1924-1933. DOI: 10.34067/KID.0004282022.
[39]
GANDHI D, KALRA P, RATERMAN B, et al. Magnetic resonance elastography-derived stiffness of the kidneys and its correlation with water perfusion[J/OL]. NMR Biomed, 2020, 33(4): e4237 [2023-07-03]. https://doi.org/10.1002/nbm.4237. DOI: 10.1002/nbm.4237.
[40]
CHEN J, ZHANG Z, LIU J, et al. Multiparametric magnetic resonance imaging of the kidneys: effects of regional, side, and hydration variations on functional quantifications[J]. J Magn Reson Imaging, 2023, 57(5): 1576-1586. DOI: 10.1002/jmri.28477.
[41]
KENNEDY P, BANE O, HECTORS S J, et al. Magnetic resonance elastography vs. point shear wave ultrasound elastography for the assessment of renal allograft dysfunction[J/OL]. Eur J Radiol, 2020, 130: 109180 [2023-07-03]. https://doi.org/10.1016/j.ejrad.2020. DOI: 10.1016/j.ejrad.2020.109180.
[42]
PREZZI D, NEJI R, KELLY-MORLAND C, et al. Characterization of small renal tumors with magnetic resonance elastography: a feasibility study[J]. Invest Radiol, 2018, 53(6): 344-351. DOI: 10.1097/RLI.0000000000000449.
[43]
NAGY J A, BROWN L F, SENGER D R, et al. Pathogenesis of tumor stroma generation: a critical role for leaky blood vessels and fibrin deposition[J]. Biochim Biophys Acta, 1989, 948(3): 305-326. DOI: 10.1016/0304-419x(89)90004-8.
[44]
HELDIN C H, RUBIN K, PIETRAS K, et al. High interstitial fluid pressure-an obstacle in cancer therapy[J]. Nat Rev Cancer, 2004, 4(10): 806-813. DOI: 10.1038/nrc1456.
[45]
ASBACH P, RO S R, ALDOJ N, et al. In vivo quantification of water diffusion, stiffness, and tissue fluidity in benign prostatic hyperplasia and prostate cancer[J]. Invest Radiol, 2020, 55(8): 524-530. DOI: 10.1097/RLI.0000000000000685.
[46]
REITER R, MAJUMDAR S, KEARNEY S, et al. Prostate cancer assessment using MR elastography of fresh prostatectomy specimens at 9.4 T[J]. Magn Reson Med, 2020, 84(1): 396-404. DOI: 10.1002/mrm.28127.
[47]
BEYER T, SCHLEMMER H, WEBER M, et al. PI-RADS 2.1–image interpretation: the most important updates and their clinical implications PI-RADS 2.1-befundinterpretation: die wichtigsten neuerungen und ihre klinischen implikationen[J]. Rofo, 2020, 193: 787-796. DOI: 10.1055/a-1324-4010.
[48]
MULLER B G, SHIH J H, SANKINENI S, et al. Prostate cancer: interobserver agreement and accuracy with the revised prostate imaging reporting and data system at multiparametric MR imaging[J]. Radiology, 2015, 277(3): 741-750. DOI: 10.1148/radiol.2015142818.
[49]
AHMED H U, EL-SHATER BOSAILY A, BROWN L C, et al. Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study[J]. Lancet, 2017, 389(10071): 815-822. DOI: 10.1016/S0140-6736(16)32401-1.
[50]
LI M S, GUO J, HU P, et al. Tomoelastography based on multifrequency MR elastography for prostate cancer detection: comparison with multiparametric MRI[J/OL]. Radiology, 2021, 299(2): 362-370. DOI: 10.1148/radiol.2021201852.
[51]
SHI C Z, ZHANG D, XIAO Z Y, et al. Ultrahigh b-values MRI in normal human prostate: initial research on reproducibility and age-related differences[J]. J Magn Reson Imaging, 2017, 46(3): 801-812. DOI: 10.1002/jmri.25629.
[52]
DENG Y, YI Z Y, ZHANG T H, et al. Magnetic resonance elastography of the prostate in patients with lower urinary tract symptoms: feasibility of the modified driver at high multi-frequencies[J]. Abdom Radiol, 2022, 47(1): 399-408. DOI: 10.1007/s00261-021-03302-6.
[53]
LI S Y, CHEN M, WANG W C, et al. A feasibility study of MR elastography in the diagnosis of prostate cancer at 3.0T[J]. Acta Radiol, 2011, 52(3): 354-358. DOI: 10.1258/ar.2010.100276.
[54]
HU B, DENG Y, CHEN J B, et al. Evaluation of MR elastography for prediction of lymph node metastasis in prostate cancer[J]. Abdom Radiol, 2021, 46(7): 3387-3400. DOI: 10.1007/s00261-021-02982-4.

PREV Progress of MRI in assessing the efficacy of chemotherapy for colorectal liver metastases
NEXT Advances in magnetic resonance neuro imaging of primary dysmenorrhea
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn