Share:
Share this content in WeChat
X
Review
Research progress in quantitative magnetic resonance imaging of articular cartilage injury
LI Xinru  LI Wei 

Cite this article as: LI X R, LI W. Research progress in quantitative magnetic resonance imaging of articular cartilage injury[J]. Chin J Magn Reson Imaging, 2023, 14(11): 198-202. DOI:10.12015/issn.1674-8034.2023.11.034.


[Abstract] The acute and chronic injuries of joints can cause different degrees of cartilage damage, early cartilage damage can often repair itself, and the middle and late damage is irreversible, with the progress of the disease, resulting in joint deformity or dysfunction, seriously affecting the normal life of patients. At present, it is difficult for conventional magnetic resonance imaging technology to accurately assess the early damage of cartilage. But quantitative MRI technology can accurately evaluate the early damage of cartilage non-invasive by analyzing the biochemical components and ultrastructural changes of cartilage. In this paper, the pathophysiological mechanism of osteocartilage injury and the latest research progress of non-invasive MRI quantitative evaluation technology are reviewed, so as to prevent the deterioration of cartilage injury or reverse its effects in early clinical diagnosis.
[Keywords] articular cartilage;magnetic resonance imaging;T1ρ;T1-mapping;T2-mapping;diffusion weighted imaging;diffusion tensor imaging;diffusion kurtosis imaging

LI Xinru   LI Wei*  

Department of Imaging, Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010010, China

Corresponding author: LI W, E-mail: 26476432@qq.com

Conflicts of interest   None.

ACKNOWLEDGMENTS Natural Science Foundation of Inner Mongolia Autonomous Region (No. 2022MS08012); Scientific and Technological Innovation Team Plan of Inner Mongolia Medical University (No.YKD2022TD034).
Received  2023-05-30
Accepted  2023-10-27
DOI: 10.12015/issn.1674-8034.2023.11.034
Cite this article as: LI X R, LI W. Research progress in quantitative magnetic resonance imaging of articular cartilage injury[J]. Chin J Magn Reson Imaging, 2023, 14(11): 198-202. DOI:10.12015/issn.1674-8034.2023.11.034.

[1]
DU X M, CAI L Y, XIE J, et al. The role of TGF-beta3 in cartilage development and osteoarthritis[J/OL]. Bone Res, 2023, 11(1): 2 [2023-05-06]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9806111. DOI: 10.1038/s41413-022-00239-4.
[2]
ZHANG T S, YAO Y C. Effects of inflammatory cytokines on bone/cartilage repair[J]. J Cell Biochem, 2019, 120(5): 6841-6850. DOI: 10.1002/jcb.27953.
[3]
STRICKLAND C D, HO C K, MERKLE A N, et al. MR imaging of knee cartilage injury and repair surgeries[J]. Magn Reson Imaging Clin N Am, 2022, 30(2): 227-239. DOI: 10.1016/j.mric.2021.11.004.
[4]
THOMAS B L, ELDRIDGE S E, NOSRATI B, et al. WNT3A-loaded exosomes enable cartilage repair[J/OL]. J Extracell Vesicles, 2021, 10(7): e12088 [2023-05-16]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8134720. DOI: 10.1002/jev2.12088.
[5]
SHARAFI A, ZIBETTI M V W, CHANG G, et al. 3D magnetic resonance fingerprinting for rapid simultaneous T1, T2, and T1ρ volumetric mapping of human articular cartilage at 3 T[J/OL]. NMR Biomed, 2022, 35(12): e4800 [2023-05-13]. https://pubmed.ncbi.nlm.nih.gov/35815660. DOI: 10.1002/nbm.4800.
[6]
OEI E H G, VAN ZADELHOFF T A, EIJGENRAAM S M, et al. 3D MRI in osteoarthritis[J]. Semin Musculoskelet Radiol, 2021, 25(3): 468-479. DOI: 10.1055/s-0041-1730911.
[7]
WANG G L, CHEN S, XIE Z A, et al. TGFβ attenuates cartilage extracellular matrix degradation via enhancing FBXO6-mediated MMP14 ubiquitination[J]. Ann Rheum Dis, 2020, 79(8): 1111-1120. DOI: 10.1136/annrheumdis-2019-216911.
[8]
FAN X W, WU X X, DE LIMA L T F, et al. The deterioration of calcified cartilage integrity reflects the severity of osteoarthritis-a structural, molecular, and biochemical analysis[J/OL]. FASEB J, 2022, 36(2): e22142 [2023-05-13]. https://pubmed.ncbi.nlm.nih.gov/35032407. DOI: 10.1096/fj.202101449R.
[9]
LEE S Y, LEE J W. 3D spheroid cultures of stem cells and exosome applications for cartilage repair[J/OL]. Life, 2022, 12(7): 939 [2023-05-17]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6769977. DOI: 10.3390/life12070939.
[10]
EMANUEL K S, KELLNER L J, PETERS M J M, et al. The relation between the biochemical composition of knee articular cartilage and quantitative MRI: a systematic review and meta-analysis[J]. Osteoarthritis Cartilage, 2022, 30(5): 650-662. DOI: 10.1016/j.joca.2021.10.016.
[11]
PENG Z, SUN H, BUNPETCH V, et al. The regulation of cartilage extracellular matrix homeostasis in joint cartilage degeneration and regeneration[J/OL]. Biomaterials, 2021, 268: 120555 [2023-09-14]. https://pubmed.ncbi.nlm.nih.gov/33285440. DOI: 10.1016/j.biomaterials.2020.120555.
[12]
ZHANG M C, THELEMAN J L, LYGRISSE K A, et al. Epigenetic mechanisms underlying the aging of articular cartilage and osteoarthritis[J]. Gerontology, 2019, 65(4): 387-396. DOI: 10.1159/000496688.
[13]
KRISHNAN Y, GRODZINSKY A J. Cartilage diseases[J]. Matrix Biol, 2018, 71/72: 51-69. DOI: 10.1016/j.matbio.2018.05.005.
[14]
LIU L L, LIU H N, ZHEN Z M, et al. Analysis of knee joint injury caused by physical training of freshmen students based on 3T MRI and automatic cartilage segmentation technology: a prospective study[J/OL]. Front Endocrinol, 2022, 13: 839112 [2023-05-13]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9124811. DOI: 10.3389/fendo.2022.839112.
[15]
CHEN Z M, ZHONG H, WEI J S, et al. Inhibition of Nrf2/HO-1 signaling leads to increased activation of the NLRP3 inflammasome in osteoarthritis[J/OL]. Arthritis Res Ther, 2019, 21(1): 300 [2023-05-16]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6929452. DOI: 10.1186/s13075-019-2085-6.
[16]
KOVÁCS B, VAJDA E, NAGY E E. Regulatory effects and interactions of the Wnt and OPG-RANKL-RANK signaling at the bone-cartilage interface in osteoarthritis[J/OL]. Int J Mol Sci, 2019, 20(18): 4653 [2023-05-13]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6769977. DOI: 10.3390/ijms20184653.
[17]
MIXON A, SAVAGE A, BAHAR-MONI A S, et al. An in vitro investigation to understand the synergistic role of MMPs-1 and 9 on articular cartilage biomechanical properties[J/OL]. Sci Rep, 2021, 11(1): 14409 [2023-05-14]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8277889. DOI: 10.1038/s41598-021-93744-1.
[18]
CHIEN S Y, TSAI C H, LIU S C, et al. Noggin inhibits IL-1β and BMP-2 expression, and attenuates cartilage degeneration and subchondral bone destruction in experimental osteoarthritis[J/OL]. Cells, 2020, 9(4): 927 [2023-05-14]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7226847. DOI: 10.3390/cells9040927.
[19]
SHAO J H, DING Z R, PENG J H, et al. miR-146a-5p promotes IL-1β-induced chondrocyte apoptosis through the TRAF6-mediated NF-kB pathway[J]. Inflamm Res, 2020, 69(6): 619-630. DOI: 10.1007/s00011-020-01346-w.
[20]
LIU X, ZHAO J, JIANG H, et al. ALPK1 aggravates TMJOA cartilage degradation via NF-κB and ERK1/2 signaling[J]. J Dent Res, 2022, 101(12): 1499-1509. DOI: 10.1177/00220345221100179.
[21]
GE G R, BAI J X, WANG Q, et al. Punicalagin ameliorates collagen-induced arthritis by downregulating M1 macrophage and pyroptosis via NF-κB signaling pathway[J]. Sci China Life Sci, 2022, 65(3): 588-603. DOI: 10.1007/s11427-020-1939-1.
[22]
YANG Z J, XIE C, OU S W, et al. Cutoff points of T1 rho/T2 mapping relaxation times distinguishing early-stage and advanced osteoarthritis[J]. Arch Med Sci, 2022, 18(4): 1004-1015. DOI: 10.5114/aoms/140714.
[23]
SIFRE V, TEN-ESTEVE A, SERRA C I, et al. Knee cartilage and subchondral bone evaluations by magnetic resonance imaging correlate with histological biomarkers in an osteoarthritis rabbit model[J/OL]. Cartilage, 2022, 13(3): 19476035221118166 [2023-09-09]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9421031. DOI: 10.1177/19476035221118166.
[24]
WU Y, MA Y J, DU J, et al. Accelerating quantitative MR imaging with the incorporation of B1 compensation using deep learning[J]. Magn Reson Imaging, 2020, 72: 78-86. DOI: 10.1016/j.mri.2020.06.011.
[25]
SUROWIEC R K, LUCAS E P, HO C P. Quantitative MRI in the evaluation of articular cartilage health: reproducibility and variability with a focus on T2 mapping[J]. Knee Surg Sports Traumatol Arthrosc, 2014, 22(6): 1385-1395. DOI: 10.1007/s00167-013-2714-6.
[26]
SHI L, YU J H, ZHANG X Y. Correlation analysis of T2-mapping performance and proteoglycan content of cartilage in model of knee osteoarthritis[J]. Radiol Pract, 2019, 34(12): 1375-1379. DOI: 10.13609/j.cnki.1000-0313.2019.12.019.
[27]
LI W, YU Z C, JIA Y B, et al. The correlation between the expression of matrix metalloproteinase-1 and magnetic resonance T2-mapping in talus osteochondral injury[J]. Chin J Magn Reson Imag, 2021, 12(5): 44-49. DOI: 10.12015/issn.1674-8034.2021.05.010.
[28]
KAZCI O, YIGIT H, KOSAR P. T2 MRI mapping of knee cartilage in professional ballet dancers[J]. Med Probl Perform Art, 2020, 35(4): 221-226. DOI: 10.21091/mppa.2020.4031.
[29]
BAKER M E, KERSHAW L E, CARSTENS A, et al. T2 mapping of cartilage in the equine distal interphalangeal joint with corresponding histology using 0.27 T and 3.0 T magnetic resonance imaging[J]. Equine Vet J, 2023, 55(5): 843-852. DOI: 10.1111/evj.13900.
[30]
MAMISCH T C, TRATTNIG S, QUIRBACH S, et al. Quantitative T2 mapping of knee cartilage: differentiation of healthy control cartilage and cartilage repair tissue in the knee with unloading: initial results[J]. Radiology, 2010, 254(3): 818-826. DOI: 10.1148/radiol.09090335.
[31]
SHIMOMURA K, HAMADA H, HART D A, et al. Histological analysis of cartilage defects repaired with an autologous human stem cell construct 48 weeks postimplantation reveals structural details not detected by T2-mapping MRI[J]. Cartilage, 2021, 13(1_suppl): 694S-706S. DOI: 10.1177/1947603521989423.
[32]
LI J F, WANG Y J, ZHANG X S, et al. Study of the value of MR T2 mapping in the evaluation of peripheral muscle changes in knee osteoarthritis[J]. Chin J Magn Reson Imag, 2023, 14(3): 117-121, 133. DOI: 10.12015/issn.1674-8034.2023.03.020.
[33]
RENNER N, KLEYER A, KRÖNKE G, et al. T2 mapping as a new method for quantitative assessment of cartilage damage in rheumatoid arthritis[J]. J Rheumatol, 2020, 47(6): 820-825. DOI: 10.3899/jrheum.180728.
[34]
BRINKHOF S, MOLLER N TE, FROELING M, et al. T2* mapping in an equine articular groove model: Visualizing changes in collagen orientation[J]. J Orthop Res, 2020, 38(11): 2383-2389. DOI: 10.1002/jor.24764.
[35]
YANG L, SUN C, GONG T, et al. T1ρ, T2 and T2* mapping of lumbar intervertebral disc degeneration: a comparison study[J/OL]. BMC Musculoskelet Disord, 2022, 23(1): 1135 [2023-09-08]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9793566. DOI: 10.1186/s12891-022-06040-y.
[36]
SCHÜTZ U, MARTENSEN T, KLEINER S, et al. T2*-mapping of knee cartilage in response to mechanical loading in alpine skiing: A feasibility study[J]. Diagnostics, 2022, 12(6): 1391 [2023-09-10]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9222057. DOI: 10.3390/diagnostics12061391.
[37]
TSAI P H, WONG C C, CHAN W P. Radial T2* mapping reveals early meniscal abnormalities in patients with knee osteoarthritis[J]. Eur Radiol, 2022, 32(8): 5642-5649. DOI: 10.1007/s00330-022-08641-6.
[38]
ANDREISEK G, WEIGER M. T2* mapping of articular cartilage: current status of research and first clinical applications[J]. Invest Radiol, 2014, 49(1): 57-62. DOI: 10.1097/RLI.0b013e3182a574e1.
[39]
WANG L G, REGATTE R R. T₁ρ MRI of human musculoskeletal system[J]. J Magn Reson Imaging, 2015, 41(3): 586-600. DOI: 10.1002/jmri.24677.
[40]
MA Y J, CARL M, SEARLEMAN A, et al. 3D adiabatic T1ρ prepared ultrashort echo time cones sequence for whole knee imaging[J]. Magn Reson Med, 2018, 80(4): 1429-1439. DOI: 10.1002/mrm.27131.
[41]
WU M, MA Y J, LIU M Y, et al. Quantitative assessment of articular cartilage degeneration using 3D ultrashort echo time cones adiabatic T1ρ (3D UTE-Cones-AdiabT1ρ) imaging[J]. Eur Radiol, 2022, 32(9): 6178-6186. DOI: 10.1007/s00330-022-08722-6.
[42]
GAO L X, YUAN H S. T1ρ technique in quantitatively evaluation on ankle osteochondral lesions of talus[J]. Chin J Med Imag Technol, 2020, 36(3): 444-447. DOI: 10.13929/j.issn.1003-3289.2020.03.034.
[43]
LUO M Q, LI H W, XIANG H C, et al. 3.0T MR T1 ρand T2 mapping for evaluating articular cartilage degeneration of medial femoral condyle in rabbits[J]. Chin J Med Imag Technol, 2022, 38(10): 1446-1451. DOI: 10.13929/j.issn.1003-3289.2022.10.002.
[44]
BUTLER J J, WINGO T, KENNEDY J G. Presurgical and postsurgical MRI evaluation of osteochondral lesions of the foot and ankle: a primer[J]. Foot Ankle Clin, 2023, 28(3): 603-617. DOI: 10.1016/j.fcl.2023.04.010.
[45]
SHINOHARA M, AKAGI R, WATANABE A, et al. Time-dependent change in cartilage repair tissue evaluated by magnetic resonance imaging up to 2 years after atelocollagen-assisted autologous cartilage transplantation: data from the CaTCh study[J/OL]. Cartilage, 2022, 13(3): 19476035221109227 [2023-09-08]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9277438. DOI: 10.1177/19476035221109227.
[46]
WU M, MA Y J, WAN L D, et al. Magic angle effect on adiabatic T1ρ imaging of the Achilles tendon using 3D ultrashort echo time cones trajectory[J/OL]. NMR Biomed, 2020, 33(8): e4322 [2023-09-08]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7393640. DOI: 10.1002/nbm.4322.
[47]
LINK T M, JOSEPH G B, LI X J. MRI-based T1rho and T2 cartilage compositional imaging in osteoarthritis: what have we learned and what is needed to apply it clinically and in a trial setting?[J]. Skeletal Radiol, 2023, 52(11): 2137-2147. DOI: 10.1007/s00256-023-04310-x.
[48]
WANG D D, YIN H J, LIU W L, et al. Comparative analysis of the diagnostic values of T2 mapping and diffusion-weighted imaging for sacroiliitis in ankylosing spondylitis[J]. Skeletal Radiol, 2020, 49(10): 1597-1606. DOI: 10.1007/s00256-020-03442-8.
[49]
RAYA J G, DUARTE A, WANG N, et al. Applications of diffusion-weighted MRI to the musculoskeletal system[J/OL]. J Magn Reson Imaging, 2023 [2023-09-15]. https://pubmed.ncbi.nlm.nih.gov/37477576. DOI: 10.1002/jmri.28870.
[50]
LI L, ZHOU Z G, LI J, et al. Diffusion kurtosis imaging provides quantitative assessment of the microstructure changes of disc degeneration: an in vivo experimental study[J]. Eur Spine J, 2019, 28(5): 1005-1013. DOI: 10.1007/s00586-019-05924-3.
[51]
SUN W W, HUANG B F, LI L. Application of multi-b value DWI and T2* mapping imaging cartilage quantitative analysis technology in diagnosis of KOA[J]. Imag Sci Photochem, 2022, 40(5): 1241-1246. DOI: 10.7517/issn.1674-0475.220520.
[52]
LI C Y, LI C Y. Application of T2 mapping and DWI imaging technology in the diagnosis of patellar cartilage injury[J]. Imag Sci Photochem, 2022, 40(4): 752-756. DOI: 10.7517/issn.1674-0475.220105.
[53]
WANG N, MIRANDO A J, COFER G, et al. Characterization complex collagen fiber architecture in knee joint using high-resolution diffusion imaging[J]. Magn Reson Med, 2020, 84(2): 908-919. DOI: 10.1002/mrm.28181.
[54]
DUARTE A, RUIZ A, FERIZI U, et al. Diffusion tensor imaging of articular cartilage using a navigated radial imaging spin-echo diffusion (RAISED) sequence[J]. Eur Radiol, 2019, 29(5): 2598-2607. DOI: 10.1007/s00330-018-5780-9.
[55]
FRIEDRICH K M, MAMISCH T C, PLANK C, et al. Diffusion-weighted imaging for the follow-up of patients after matrix-associated autologous chondrocyte transplantation[J]. Eur J Radiol, 2010, 73(3): 622-628. DOI: 10.1016/j.ejrad.2008.12.017.
[56]
ZHAO Q, RIDOUT R P, SHEN J K, et al. Effects of angular resolution and b value on diffusion tensor imaging in knee joint[J]. Cartilage, 2021, 13(2_suppl): 295S-303S. DOI: 10.1177/19476035211007909.
[57]
MASUTANI Y. Recent advances in parameter inference for diffusion MRI signal models[J]. Magn Reson Med Sci, 2022, 21(1): 132-147. DOI: 10.2463/mrms.rev.2021-0005.
[58]
TAHA H T, CHAD J A, CHEN J J. DKI enhances the sensitivity and interpretability of age-related DTI patterns in the white matter of UK biobank participants[J]. Neurobiol Aging, 2022, 115: 39-49. DOI: 10.1016/j.neurobiolaging.2022.03.008.
[59]
HUANG J J, XU J H, KANG L, et al. Identifying epilepsy based on deep learning using DKI images[J/OL]. Front Hum Neurosci, 2020, 14: 590815 [2023-09-06]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7680804. DOI: 10.3389/fnhum.2020.590815.
[60]
HU S, PENG Y, WANG Q S, et al. T2*-weighted imaging and diffusion kurtosis imaging (DKI) of rectal cancer: correlation with clinical histopathologic prognostic factors[J]. Abdom Radiol, 2022, 47(2): 517-529. DOI: 10.1007/s00261-021-03369-1.
[61]
ANANIA V, COLLIER Q, VERAART J, et al. Improved diffusion parameter estimation by incorporating T2 relaxation properties into the DKI-FWE model[J]. Neuroimage, 2022, 256: 119219 [2023-05-27]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9677810. DOI: 10.1016/j.neuroimage.2022.119219.
[62]
ATHERTYA J S, MA Y J, MASOUD AFSAHI A, et al. Accelerated quantitative 3D UTE-cones imaging using compressed sensing[J/OL]. Sensors, 2022, 22(19): 7459 [2023-05-28]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9573555. DOI: 10.3390/s22197459.
[63]
CHENG K Y, MOAZAMIAN D, MA Y J, et al. Clinical application of ultrashort echo time (UTE) and zero echo time (ZTE) magnetic resonance (MR) imaging in the evaluation of osteoarthritis[J]. Skeletal Radiol, 2023, 52(11): 2149-2157. DOI: 10.1007/s00256-022-04269-1.
[64]
YANG J W, SHAO H D, MA Y J, et al. Quantitative ultrashort echo time magnetization transfer (UTE-MT) for diagnosis of early cartilage degeneration: comparison with UTE-T2* and T2 mapping[J]. Quant Imaging Med Surg, 2020, 10(1): 171-183. DOI: 10.21037/qims.2019.12.04.
[65]
JANG H, MA Y J, CARL M, et al. Ultrashort echo time Cones double echo steady state (UTE-Cones-DESS) for rapid morphological imaging of short T2 tissues[J]. Magn Reson Med, 2021, 86(2): 881-892. DOI: 10.1002/mrm.28769.

PREV Advances in magnetic resonance neuro imaging of primary dysmenorrhea
NEXT Study of gray matter volume changes in cerebellar subregions of type 2 diabetes and its correlation with insulin resistance
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn