Share:
Share this content in WeChat
X
Clinical Article
Study of gray matter volume changes in cerebellar subregions of type 2 diabetes and its correlation with insulin resistance
ZHANG Huiyan  SHEN Guo  YANG Chen  TAN Jian  TIAN Jing  LI Zhoule  HUANG Gang  ZHAO Lianping 

Cite this article as: ZHANG H Y, SHEN G, YANG C, et al. Study of gray matter volume changes in cerebellar subregions of type 2 diabetes and its correlation with insulin resistance[J]. Chin J Magn Reson Imaging, 2023, 14(12): 1-5. DOI:10.12015/issn.1674-8034.2023.12.001.


[Abstract] Objective A voxel-based morphometry (VBM) was used to investigate the abnormal patterns of gray matter volume of cerebellar subregions of type 2 diabetes mellitus (T2DM) patients using spatially unbiased infratentorial template for fine subregion segmentation of the cerebellum.Materials and Methods Seventy-five patients with T2DM and 53 healthy controls (HCs) were recruited, and collected cranial MRI image data, clinical data, and cognitive-psychological scales from all subjects. Differences in gray matter volume in cerebellar subregions between T2DM and HCs were compared by independent samples t test, and Pearson or Spearman correlation analysis was performed with clinical data and scores of cognitive-psychological scales in differential cerebellar subregions.Results Compared with HCs, T2DM patients had lower Montreal Cognitive Assessment scores and higher 24-item Hamilton Depression Scale and Hamilton Anxiety Scale scores (P<0.001). Reduced gray matter volume in the right cerebellar Crus Ⅰ and bilateral cerebellar lobules Ⅰ-Ⅴ/Ⅰ-Ⅳ subregions (voxel level P<0.001, cluster size>100). The body mass index was positively correlated with right lobules Ⅰ-Ⅴ (r=0.265, P=0.022), left lobules Ⅰ-Ⅳ (r=0.323, P=0.005) subregions gray matter volume, and gray matter volume in right Crus Ⅰ subregion was negatively correlated with fasting insulin levels (r=-0.263, P=0.023) and updated homeostasis model assessment insulin resistance index (r=-0.327, P=0.004).Conclusions Patients with T2DM are at risk for mild cognitive impairment and depression and anxiety, and reduced gray matter volume of right Crus Ⅰ may be associated with insulin resistance.
[Keywords] type 2 diabetes mellitus;magnetic resonance imaging;cerebellum;gray matter volume;insulin resistance

ZHANG Huiyan1, 3   SHEN Guo1, 3   YANG Chen2   TAN Jian2   TIAN Jing3   LI Zhoule2   HUANG Gang3   ZHAO Lianping1, 3*  

1 School of Clinical Medicine, Ningxia Medical University, Yinchuan 750000, China

2 The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou 730000, China

3 Department of Radiology, Gansu Provincial Hospital, Lanzhou 730000, China

Corresponding author: ZHAO L P, E-mail: lianping_zhao007@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS National Natural Science Foundation of China (No. 81901724); Research Fund of Gansu Provincial Hospital (No. 22GSSYD-75).
Received  2023-07-06
Accepted  2023-12-02
DOI: 10.12015/issn.1674-8034.2023.12.001
Cite this article as: ZHANG H Y, SHEN G, YANG C, et al. Study of gray matter volume changes in cerebellar subregions of type 2 diabetes and its correlation with insulin resistance[J]. Chin J Magn Reson Imaging, 2023, 14(12): 1-5. DOI:10.12015/issn.1674-8034.2023.12.001.

[1]
SUN H, SAEEDI P, KARURANGA S, et al. IDF diabetes atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045[J/OL]. Diabetes Res Clin Pract, 2022, 183: 109119 [2023-07-06]. https://pubmed.ncbi.nlm.nih.gov/34879977/. DOI: 10.1016/j.diabres.2021.109119.
[2]
TOMIC D, SHAW J E, MAGLIANO D J. The burden and risks of emerging complications of diabetes mellitus[J]. Nat Rev Endocrinol, 2022, 18(9): 525-539. DOI: 10.1038/s41574-022-00690-7.
[3]
ZHENG Y, LEY S H, HU F B. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications[J]. Nat Rev Endocrinol, 2018, 14(2): 88-98. DOI: 10.1038/nrendo.2017.151.
[4]
KULLMANN S, KLEINRIDDERS A, SMALL D M, et al. Central nervous pathways of insulin action in the control of metabolism and food intake[J]. Lancet Diabetes Endocrinol, 2020, 8(6): 524-534. DOI: 10.1016/S2213-8587(20)30113-3.
[5]
ZHAO X, AN X, YANG C, et al. The crucial role and mechanism of insulin resistance in metabolic disease[J/OL]. Front Endocrinol (Lausanne), 2023, 14: 1149239 [2023-07-06]. https://pubmed.ncbi.nlm.nih.gov/37056675/. DOI: 10.3389/fendo.2023.1149239.
[6]
SCHERER T, SAKAMOTO K, BUETTNER C. Brain insulin signalling in metabolic homeostasis and disease[J]. Nat Rev Endocrinol, 2021, 17(8): 468-483. DOI: 10.1038/s41574-021-00498-x.
[7]
KULLMANN S, HENI M, HALLSCHMID M, et al. Brain insulin resistance at the crossroads of metabolic and cognitive disorders in humans[J]. Physiol Rev, 2016, 96(4): 1169-209. DOI: 10.1152/physrev.00032.2015.
[8]
METOKI A, WANG Y, OLSON I R. The social cerebellum: A large-scale investigation of functional and structural specificity and connectivity[J]. Cereb Cortex, 2022, 32(5): 987-1003. DOI: 10.1093/cercor/bhab260.
[9]
ZHAO L, LUO Z, QIU S, et al. Abnormalities of aquaporin-4 in the cerebellum in bipolar Ⅱ disorder: An ultra-high b-values diffusion weighted imaging study[J]. J Affect Disord, 2020, 274: 136-143. DOI: 10.1016/j.jad.2020.05.035.
[10]
LIU R F, TIAN J, ZHAO L P, et al. Resting-state cerebellar functional connectivity in patients with type 2 diabetes mellitus[J]. Chin J Med Imaging, 2021, 29(10): 974-979. DOI: 10.3969/j.issn.1005-5185.2021.10.004.
[11]
TIAN J, ZHAO L P, LIU R F, et al. Functional connectivity of the cerebellar Crus Ⅰ in type 2 diabetes mellitus: A resting-state functional MRI study[J]. Chin J Magn Reson Imaging, 2022, 13(5): 64-69. DOI: 10.12015/issn.1674-8034.2022.05.012.
[12]
OH D J, JUNG J J, SHIN S A, et al. Brain structural alterations, diabetes biomarkers, and cognitive performance in older adults with dysglycemia[J/OL]. Front Neurol, 2021, 12: 766216 [2023-07-06]. https://pubmed.ncbi.nlm.nih.gov/34777234/. DOI: 10.3389/fneur.2021.766216.
[13]
ROY B, EHLERT L, MULLUR R, et al. Regional brain gray matter changes in patients with type 2 diabetes mellitus[J/OL]. Sci Rep, 2020, 10(1): 9925 [2023-07-06]. https://pubmed.ncbi.nlm.nih.gov/32555374/. DOI: 10.1038/s41598-020-67022-5.
[14]
DIEDRICHSEN J. A spatially unbiased atlas template of the human cerebellum[J]. Neuroimage, 2006, 33(1): 127-138. DOI: 10.1016/j.neuroimage.2006.05.056.
[15]
DENG L, LIU H, LIU H, et al. Concomitant functional impairment and reorganization in the linkage between the cerebellum and default mode network in patients with type 2 diabetes mellitus[J]. Quant Imaging Med Surg, 2021, 11(10): 4310-4320. DOI: 10.21037/qims-21-41.
[16]
CHEN G, ZHAO L, JIA Y, et al. Abnormal cerebellum-DMN regions connectivity in unmedicated bipolar Ⅱ disorder[J]. J Affect Disord, 2019, 243: 441-447. DOI: 10.1016/j.jad.2018.09.076.
[17]
HOCHE F, GUELL X, VANGEL M G, et al. The cerebellar cognitive affective/Schmahmann syndrome scale[J]. Brain, 2018, 141(1): 248-270. DOI: 10.1093/brain/awx317.
[18]
CLOUSTON S A P, KRITIKOS M, HUANG C, et al. Reduced cerebellar cortical thickness in World Trade Center responders with cognitive impairment[J/OL]. Transl Psychiatry, 2022, 12(1): 107 [2023-07-06]. https://pubmed.ncbi.nlm.nih.gov/35296637/. DOI: 10.1038/s41398-022-01873-6.
[19]
GELLERSEN H M, GUO C C, O'CALLAGHAN C, et al. Cerebellar atrophy in neurodegeneration-a meta-analysis[J]. J Neurol Neurosurg Psychiatry, 2017, 88(9): 780-788. DOI: 10.1136/jnnp-2017-315607.
[20]
CHEN Z, ZHANG R, HUO H, et al. Functional connectome of human cerebellum[J/OL]. Neuroimage, 2022, 251: 119015 [2023-07-06]. https://pubmed.ncbi.nlm.nih.gov/35189360/. DOI: 10.1016/j.neuroimage.2022.119015.
[21]
MEHNERT J, MAY A. Functional and structural alterations in the migraine cerebellum[J]. J Cereb Blood Flow Metab, 2019, 39(4): 730-739. DOI: 10.1177/0271678X17722109.
[22]
SANG L, QIN W, LIU Y, et al. Resting-state functional connectivity of the vermal and hemispheric subregions of the cerebellum with both the cerebral cortical networks and subcortical structures[J]. Neuroimage, 2012, 61(4): 1213-1225. DOI: 10.1016/j.neuroimage.2012.04.011.
[23]
HABAS C, KAMDAR N, NGUYEN D, et al. Distinct cerebellar contributions to intrinsic connectivity networks[J]. J Neurosci, 2009, 29(26): 8586-8594. DOI: 10.1523/JNEUROSCI.1868-09.2009.
[24]
CHEN Y, KUMFOR F, LANDIN-ROMERO R, et al. The Cerebellum in Frontotemporal Dementia: a Meta-Analysis of Neuroimaging Studies[J]. Neuropsychol Rev, 2019, 29(4): 450-464. DOI: 10.1007/s11065-019-09414-7.
[25]
LUPO M, OLIVITO G, GRAGNANI A, et al. Comparison of cerebellar grey matter alterations in bipolar and cerebellar patients: Evidence from voxel-based analysis[J/OL]. Int J Mol Sci, 2021, 22(7): 3511 [2023-07-06]. https://pubmed.ncbi.nlm.nih.gov/33805296/. DOI: 10.3390/ijms22073511.
[26]
HIRABAYASHI N, HATA J, FURUTA Y, et al. Association between diabetes and gray matter atrophy patterns in a general older Japanese population: The hisayama study[J]. Diabetes Care, 2022, 45(6): 1364-1371. DOI: 10.2337/dc21-1911.
[27]
AKHTAR A, SAH S P. Insulin signaling pathway and related molecules: Role in neurodegeneration and Alzheimer's disease[J/OL]. Neurochem Int, 2020, 135: 104707 [2023-07-06]. https://pubmed.ncbi.nlm.nih.gov/32092326/. DOI: 10.1016/j.neuint.2020.104707.
[28]
SHEN S, LIAO Q, WONG Y K, et al. The role of melatonin in the treatment of type 2 diabetes mellitus and Alzheimer's disease[J]. Int J Biol Sci, 2022, 18(3): 983-994. DOI: 10.7150/ijbs.66871.
[29]
HAMER J A, TESTANI D, MANSUR R B, et al. Brain insulin resistance: A treatment target for cognitive impairment and anhedonia in depression[J]. Exp Neurol, 2019, 315: 1-8. DOI: 10.1016/j.expneurol.2019.01.016.
[30]
CHEN Y C, JIAO Y, CUI Y, et al. Aberrant brain functional connectivity related to insulin resistance in type 2 diabetes: a resting-state fMRI study[J]. Diabetes Care, 2014, 37(6): 1689-1696. DOI: 10.2337/dc13-2127.
[31]
TAUBEL J C, NELSON N R, BANSAL A, et al. Design, Synthesis, and Preliminary Evaluation of [(68)Ga]Ga-NOTA-Insulin as a PET Probe in an Alzheimer's Disease Mouse Model[J]. Bioconjug Chem, 2022, 33(5): 892-906. DOI: 10.1021/acs.bioconjchem.2c00126.
[32]
LUO A, XIE Z, WANG Y, et al. Type 2 diabetes mellitus-associated cognitive dysfunction: Advances in potential mechanisms and therapies[J/OL]. Neurosci Biobehav Rev, 2022, 137: 104642 [2023-07-06]. https://pubmed.ncbi.nlm.nih.gov/35367221/. DOI: 10.1016/j.neubiorev.2022.104642.
[33]
YANG H, WANG N, LUO X, et al. Cerebellar atrophy and its contribution to motor and cognitive performance in multiple system atrophy[J/OL]. NeuroImage Clin, 2019, 23: 101891 [2023-07-06]. https://pubmed.ncbi.nlm.nih.gov/31226621/. DOI: 10.1016/j.nicl.2019.101891.
[34]
FIORENZATO E, ANTONINI A, WENNING G, et al. Cognitive impairment in multiple system atrophy[J]. Mov Disord, 2017, 32(9): 1338-1339. DOI: 10.1002/mds.27085.
[35]
MOORE D M, D'MELLO A M, MCGRATH L M, et al. The developmental relationship between specific cognitive domains and grey matter in the cerebellum[J]. Dev Cogn Neurosci, 2017, 24: 1-11. DOI: 10.1016/j.dcn.2016.12.001.
[36]
MANOR B, NEWTON E, ABDULJALIL A, et al. The relationship between brain volume and walking outcomes in older adults with and without diabetic peripheral neuropathy[J]. Diabetes Care, 2012, 35(9): 1907-1912. DOI: 10.2337/dc11-2463.
[37]
KASSIR R, GIMET P, HUPIN D, et al. Brain alterations associated with overweight evaluated by body mass index or body fat index in an elderly population: the PROOF study[J/OL]. Front Endocrinol (Lausanne), 2023, 14: 1148068 [2023-07-06]. https://pubmed.ncbi.nlm.nih.gov/37334288/. DOI: 10.3389/fendo.2023.1148068.
[38]
KOLENIC M, SPANIEL F, HLINKA J, et al. Higher Body-Mass Index and Lower Gray Matter Volumes in First Episode of Psychosis[J/OL]. Front Psychiatry, 2020, 11: 556759 [2023-07-06]. https://pubmed.ncbi.nlm.nih.gov/33173508/. DOI: 10.3389/fpsyt.2020.556759.

PREV Research progress in quantitative magnetic resonance imaging of articular cartilage injury
NEXT Clinical diagnosis value of multi-b value diffusion weighted imaging in Alzheimer,s disease
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn