Share:
Share this content in WeChat
X
Clinical Article
Clinical diagnosis value of multi-b value diffusion weighted imaging in Alzheimer's disease
QIU Yanhua  CHEN Qiuyan  SHI Liwei  ZHENG Tianxiu  ZHANG Deyong  WEI Dingtai 

Cite this article as: QIU Y H, CHEN Q Y, SHI L W, et al. Clinical diagnosis value of multi-b value diffusion weighted imaging in Alzheimer's disease[J]. Chin J Magn Reson Imaging, 2023, 14(12): 6-14. DOI:10.12015/issn.1674-8034.2023.12.002.


[Abstract] Objective To explore the value of multi-b diffusion-weighted imaging (MB-DWI) in the clinical diagnosis of Alzheimer's disease (AD), in order to assist clinical diagnosis and treatment in the early stage of AD.Materials and Methods A total of 68 subjects were enrolled in the study, including three subject populations: 24 subjects with AD, 29 subjects with cognitive impairment (MCI), and 15 normal controls (NC) with no cognitive complaints. Statistical differences in apparent diffusion coefficient (ADC), intravoxel incoherent motion-diffusion coefficient (IVIM-D), intravoxel incoherent motion-perfusion fraction (IVIM-f), aquaporin-apparent diffusion coefficient (AQP-ADC) were compared using one-way ANOVA or Cruskal-Wallis test, and further comparison between groups was performed using Bonferroni method. In addition, the correlation between clinical cognitive score and the above indexes was further analyzed.Results In the analysis of AQP-ADC and IVIM-D, the differences between the MCI group and the NC group were mainly in the frontal cortex (right P=0.046; left P=0.016), hippocampus (right P=0.020; left P=0.022), thalamus (right P=0.022; left P=0.001) and left temporal white matter (P=0.049). The results showed that compared with the NC group, the AD group showed more regional differences in the progression of AD. In addition, AQP-ADC and IVIM-D had superiority in detecting MCI and AD compared with conventional ADC when receiver operating characteristic curves (ROC) were used to analyze the diagnostic performance of MB-DWI related indexes.Conclusions Compared with conventional DWI, MB-DWI has significant advantages in AD diagnosis, especially in providing additional information at the MCI stage. MB-DWI may be another early biomarker and measure of disease progression for AD-related pathophysiological changes.
[Keywords] Alzheimer's disease;mild cognitive impairment;magnetic resonance imaging;functional magnetic resonance imaging;multi-b value diffusion weighted imaging

QIU Yanhua1   CHEN Qiuyan2, 3   SHI Liwei2, 3   ZHENG Tianxiu2, 3   ZHANG Deyong2, 3   WEI Dingtai2, 3*  

1 Department of Imaging, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou 363000, China

2 Department of Imaging, Ningde Hospital Affiliated to Ningde Normal University, Ningde 352100, China

3 Functional and Molecular Imaging Laboratory for Cerebral Vascular Diseases, Ningde Hospital Affiliated to Ningde Normal University, Ningde 352100, China

Corresponding author: WEI D T, E-mail: wdtai83@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS Natural Science Foundation of Fujian Province (No. 2021J011158); Special Project of Innovation Team of Ningde Normal University in 2020.
Received  2023-04-06
Accepted  2023-11-07
DOI: 10.12015/issn.1674-8034.2023.12.002
Cite this article as: QIU Y H, CHEN Q Y, SHI L W, et al. Clinical diagnosis value of multi-b value diffusion weighted imaging in Alzheimer's disease[J]. Chin J Magn Reson Imaging, 2023, 14(12): 6-14. DOI:10.12015/issn.1674-8034.2023.12.002.

[1]
LONG J M, HOLTZMAN D M. Alzheimer disease: An update on pathobiology and treatment strategies[J]. Cell, 2019, 179(2): 312-339. DOI: 10.1016/j.cell.2019.09.001.
[2]
ANDERSON N D. State of the science on mild cognitive impairment (MCI)[J]. CNS Spectrums, 2019, 24(1): 78-87. DOI: 10.1017/S1092852918001347.
[3]
BERMEJO PAREJA F, CONTADOR I, DEL SER T, et al. Predementia constructs: Mild cognitive impairment or mild neurocognitive disorder? A narrative review[J]. Int J Geriatr Psychiatry, 2021, 36(5): 743-755. DOI: 10.1002/gps.5474.
[4]
National Health Commission, PRC. Diagnosis and treatment of Alzheimer disease(2020 edition)[J]. Clinical Education of General Practice, 2021, 19(1): 4-6. DOI: 10.13558/j.cnki.issn1672-3686.2021.001.002.
[5]
SANFORD A M. Mild cognitive impairment[J]. Clin Geriatr Med, 2017, 33(3): 325-337. DOI: 10.1016/j.cger.2017.02.005.
[6]
VILLEMAGNE V L, BURNHAM S, BOURGEAT P, et al. Amyloid β deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer's disease: a prospective cohort study[J]. Lancet Neurol, 2013, 12(4): 357-367. DOI: 10.1016/S1474-4422(13)70044-9.
[7]
LE BIHAN D, BRETON E, LALLEMAND D, et al. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders[J]. Radiology, 1986, 161(2): 401-407. DOI: 10.1148/radiology.161.2.3763909.
[8]
RU Y H, WANG X Y, YANG Z Q, et al. Comparative study on evaluating hippocampus perfusion of patients with mild cognitive impairment by multiple b value diffusion weighted imaging and arterial spin labeling imaging[J]. J Chin Clin Med Imag, 2017, 28(8): 533-537. DOI: 10.3969/j.issn.1008-1062.2017.08.001.
[9]
AGRE P, PRESTON G M, SMITH B L, et al. Aquaporin CHIP: the archetypal molecular water channel[J/OL]. Am J Physiol, 1993, 265(4): F463-F476 [2023-04-06]. https://pubmed.ncbi.nlm.nih.gov/7694481/. DOI: 10.1152/ajprenal.1993.265.4.F463.
[10]
MUKHERJEE A, WU D, DAVIS H C, et al. Non-invasive imaging using reporter genes altering cellular water permeability[J/OL]. Nat Commun, 2016, 7: 13891 [2023-04-06]. https://www.nature.com/articles/ncomms13891. DOI: 10.1038/ncomms13891.
[11]
LI J H, LI Q J, YU B, et al. Molecular imaging of aquaporin by DWI-MRI with multiple b values: mechanism and method[J]. J Chin Clin Med Imag, 2014, 25(3): 186-189.
[12]
PAPADOPOULOS M C, VERKMAN A S. Aquaporin water channels in the nervous system[J]. Nat Rev Neurosci, 2013, 14(4): 265-277. DOI: 10.1038/nrn3468.
[13]
JESSEN N A, MUNK A S F, LUNDGAARD I, et al. The glymphatic system: A beginner's guide[J]. Neurochem Res, 2015, 40(12): 2583-2599. DOI: 10.1007/s11064-015-1581-6.
[14]
ARIGHI A, ARCARO M, FUMAGALLI G G, et al. Aquaporin-4 cerebrospinal fluid levels are higher in neurodegenerative dementia: looking at glymphatic system dysregulation[J/OL]. Alzheimers Res Ther, 2022, 14(1): 135 [2023-04-06]. https://dx.doi.org/10.1186/s13195-022-01077-6. DOI: 10.1186/s13195-022-01077-6.
[15]
KECHELIEV V, BOSS L, MAHESHWARI U, et al. Aquaporin 4 is differentially increased and dislocated in association with tau and amyloid-beta[J/OL]. Life Sci, 2023, 321: 121593 [2023-04-06]. https://doi.org/10.1016/j.lfs.2023.121593. DOI: 10.1016/j.lfs.2023.121593.
[16]
PETERSEN R C, THOMAS R G, GRUNDMAN M, et al. Vitamin E and donepezil for the treatment of mild cognitive impairment[J]. N Engl J Med, 2005, 352(23): 2379-2388. DOI: 10.1056/NEJMoa050151.
[17]
VASANTHAREKHA R, PRIYANKA H P, SWARNALINGAM T, et al. Interrelationship between Mini-Mental State Examination scores and biochemical parameters in patients with mild cognitive impairment and Alzheimer's disease[J]. Geriatr Gerontol Int, 2017, 17(10): 1737-1745. DOI: 10.1111/ggi.12957.
[18]
SCHELTENS P, DE STROOPER B, KIVIPELTO M, et al. Alzheimer's disease[J]. Lancet, 2021, 397(10284): 1577-1590. DOI: 10.1016/S0140-6736(20)32205-4.
[19]
BERGAMINO M, NESPODZANY A, BAXTER L C, et al. Preliminary assessment of intravoxel incoherent motion diffusion-weighted MRI (IVIM‐DWI) metrics in Alzheimer's disease[J]. J Magn Reson Imaging, 2020, 52(6): 1811-1826. DOI: 10.1002/jmri.2727.
[20]
KANTARCI K, PETERSEN R C, BOEVE B F, et al. DWI predicts future progression to Alzheimer disease in amnestic mild cognitive impairment[J]. Neurology, 2005, 64(5): 902-904. DOI: 10.1212/01.WNL.0000153076.46126.E9.
[21]
TAKAO H, AMEMIYA S, ABE O. Reliability of changes in brain volume determined by longitudinal voxel-based morphometry[J]. J Magn Reson Imaging, 2021, 54(2): 609-616. DOI: 10.1002/jmri.27568.
[22]
WHITWELL J L, PRZYBELSKI S A, WEIGAND S D, et al. 3D maps from multiple MRI illustrate changing atrophy patterns as subjects progress from mild cognitive impairment to Alzheimer's disease[J]. Brain, 2007, 130(7): 1777-1786. DOI: 10.1093/brain/awm112.
[23]
CHEN Y H, WU J L, HU N Y, et al. Distinct projections from the infralimbic cortex exert opposing effects in modulating anxiety and fear[J/OL]. J Clin Invest, 2021, 131(14): e145692 [2023-04-06]. https://www.jci.org/articles/view/145692. DOI: 10.1172/JCI145692.
[24]
VENNERI A, GORGOGLIONE G, TORACI C, et al. Combining neuropsychological and structural neuroimaging indicators of conversion to Alzheimer's disease in amnestic mild cognitive impairment[J]. Curr Alzheimer Res, 2011, 8(7): 789-797. DOI: 10.2174/156720511797633160.
[25]
KATSUKI F, GERASHCHENKO D, BROWN R E. Alterations of sleep oscillations in Alzheimer's disease: A potential role for GABAergic neurons in the cortex, hippocampus, and thalamus[J]. Brain Res Bull, 2022, 187: 181-198. DOI: 10.1016/j.brainresbull.2022.07.002.
[26]
VAN DE MORTEL L A, THOMAS R M, VAN WINGEN G A. Grey matter loss at different stages of cognitive decline: A role for the thalamus in developing Alzheimer's disease[J]. J Alzheimers Dis, 2021, 83(2): 705-720. DOI: 10.3233/JAD-210173.
[27]
FENG F, ZHOU B, WANG L, et al. Correlation between functional and structural connections of hippocampus-thalamus in Alzheimer's disease and amnestic mild cognitive impairment[J] . Chin J Intern Med, 2019, 58(9): 662-667. DOI: 10.3760/cma.j.issn.0578-1426.2019.09.006.
[28]
LU G Q, ZHANG S Z, LI R. The functional connectivity of default mode network and hippocampus in Alzheimer's disease: A Meta-analysis based on SDM[J]. Chin J Magn Reson Imaging, 2022, 13(3): 54-60. DOI: 10.12015/issn.1674-8034.2022.03.011.
[29]
CHANDRA A, FARRELL C, WILSON H, et al. Aquaporin-4 polymorphisms predict amyloid burden and clinical outcome in the Alzheimer's disease spectrum[J]. Neurobiol Aging, 2021, 97: 1-9. DOI: 10.1016/j.neurobiolaging.2020.06.007.
[30]
BARRANCO N, PLA V, ALCOLEA D, et al. Dense core vesicle markers in CSF and cortical tissues of patients with Alzheimer's disease[J/OL]. Transl Neurodegener, 2021, 10(1): 37 [2023-04-06]. https://doi.org/10.1186/s40035-021-00263-0. DOI: 10.1186/s40035-021-00263-0.
[31]
PEREIRA J B, JANELIDZE S, OSSENKOPPELE R, et al. Untangling the association of amyloid-beta and tau with synaptic and axonal loss in Alzheimer's disease[J]. Brain, 2021, 144(1): 310-324. DOI: 10.1093/brain/awaa395.
[32]
SIMON M, WANG M X, ISMAIL O, et al. Loss of perivascular aquaporin-4 localization impairs glymphatic exchange and promotes amyloid beta plaque formation in mice[J/OL]. Alzheimers Res Ther, 2022, 14(1): 59 [2023-04-06]. https://doi.org/10.1186/s13195-022-00999-5. DOI: 10.1093/brain/awaa395.
[33]
ZHOU Z, ZHAN J, CAI Q, et al. The water transport system in astrocytes-aquaporins[J/OL]. Cells, 2022, 11(16): 2564 [2023-04-06]. https://doi.org/10.3390/cells11162564. DOI: 10.3390/cells11162564.
[34]
CAMASSA L, LUNDE L K, HODDEVIK E H, et al. Mechanisms underlying AQP4 accumulation in astrocyte endfeet[J]. Glia, 2015, 63(11): 2073-2091. DOI: 10.1002/glia.22878.
[35]
HOSHI A, YAMAMOTO T, SHIMIZU K, et al. Characteristics of aquaporin expression surrounding senile plaques and cerebral amyloid angiopathy in Alzheimer disease[J]. J Neuropathol Exp Neurol, 2012, 71(8): 750-759. DOI: 10.1097/NEN.0b013e3182632566.
[36]
BRAAK H, BRAAK E. Staging of Alzheimer's disease-related neurofibrillary changes[J]. Neurobiol Aging, 1995, 16(3): 271-278. DOI: 10.1016/0197-4580(95)00021-6.
[37]
YOSHIURA T, MIHARA F, TANAKA A, et al. High b value diffusion-weighted imaging is more sensitive to white matter degeneration in Alzheimer's disease[J]. Neuroimage, 2003, 20(1): 413-419. DOI: 10.1016/s1053-8119(03)00342-2.
[38]
ALTAMURA C, SCRASCIA F, QUATTROCCHI C C, et al. Regional MRI diffusion, white-matter hyperintensities, and cognitive function in Alzheimer's disease and vascular dementia[J]. J Clin Neurol, 2016, 12(2): 201-208. DOI: 10.3988/jcn.2016.12.2.201.
[39]
XIA N, LI Y, XUE Y, et al. Intravoxel incoherent motion diffusion-weighted imaging in the characterization of Alzheimer's disease[J]. Brain Imaging Behav, 2022, 16(2): 617-626. DOI: 10.1007/s11682-021-00538-0.
[40]
DYVORNE H, JAJAMOVICH G, KAKITE S, et al. Intravoxel incoherent motion diffusion imaging of the liver: Optimal b-value subsampling and impact on parameter precision and reproducibility[J]. Eur J Radiol, 2014, 83(12): 2109-2113. DOI: 10.1016/j.ejrad.2014.09.003.
[41]
GUZMAN-MARTINEZ L, CALFIO C, FARIAS G A, et al. New frontiers in the prevention, diagnosis, and treatment of Alzheimer's disease[J]. J Alzheimers Dis, 2021, 82(s1): S51-S63. DOI: 10.3233/JAD-201059.
[42]
BINNEWIJZEND M A A, BENEDICTUS M R, KUIJER J P A, et al. Cerebral perfusion in the predementia stages of Alzheimer's disease[J]. Eur Radiol, 2016, 26(2): 506-514. DOI: 10.1007/s00330-015-3834-9.
[43]
CAMARGO A, WANG Z. Longitudinal cerebral blood flow changes in normal aging and the Alzheimer's disease continuum identified by arterial spin labeling MRI[J]. J Alzheimers Dis, 2021, 81(4): 1727-1735. DOI: 10.3233/JAD-210116.
[44]
ZHANG K L, LI W S, SUN H Z, et al. Changes of cerebral blood flow perfusion and cerebral gray matter volume in mild Alzheimer's disease[J]. J Chin Med Imaging, 2020, 31(4): 229-233. DOI: 10.12117/jccmi.2020.04.001.
[45]
FEDERAU C. Measuring perfusion: Intravoxel incoherent motion MR imaging[J]. Magn Reson Imaging Clin N Am, 2021, 29(2): 233-242. DOI: 10.1016/j.mric.2021.01.003.
[46]
FRIGERIO I, BOON B, LIN C P, et al. Amyloid-beta, p-tau and reactive microglia are pathological correlates of MRI cortical atrophy in Alzheimer's disease[J/OL]. Brain Commun, 2021, 3(4): b281 [2023-04-06]. https://doi.org/10.1093/braincomms/fcab281. DOI: 10.1093/braincomms/fcab281.
[47]
DESAI B S, SCHNEIDER J A, LI J L, et al. Evidence of angiogenic vessels in Alzheimer's disease[J]. J Neural Transm (Vienna), 2009, 116(5): 587-597. DOI: 10.1007/s00702-009-0226-9.
[48]
LE BIHAN D, TURNER R. The capillary network: a link between IVIM and classical perfusion[J]. Magn Reson Med, 1992, 27(1): 171-178. DOI: 10.1002/mrm.1910270116.
[49]
WHILE P T. A comparative simulation study of bayesian fitting approaches to intravoxel incoherent motion modeling in diffusion-weighted MRI[J]. Magn Reson Med, 2017, 78(6): 2373-2387. DOI: 10.1002/mrm.27910.

PREV Study of gray matter volume changes in cerebellar subregions of type 2 diabetes and its correlation with insulin resistance
NEXT Structural analysis of brain volume in patients with mild cognitive impairment at high altitude
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn