Share:
Share this content in WeChat
X
Clinical Article
Application of quantitative parameters based on T1 mapping sequence in identifying pathological types of lung cancer
ZHANG Wei  ZHAO Peng  GUO Wenxiu  LIN Xiangtao  ZHANG Qi  HE Yu  MA Wenjing  YANG Yongqing  WANG Yu  DIAO Ruiyuan 

Cite this article as: ZHANG W, ZHAO P, GUO W X, et al. Application of quantitative parameters based on T1 mapping sequence in identifying pathological types of lung cancer[J]. Chin J Magn Reson Imaging, 2023, 14(12): 33-39, 48. DOI:10.12015/issn.1674-8034.2023.12.006.


[Abstract] Objective To evaluate the feasibility of quantitative parameters based on T1 mapping sequence in predicting the pathological types of lung cancer.Materials and Methods A total of 117 lung cancer patients, including 62 cases of adenocarcinoma, 26 cases of squamous cell carcinoma, 29 cases of small cell lung cancer (SCLC), were enrolled in this study. Prior routine sequence scans, then the B1 field corrected variable flip angle VIBE sequence was used to acquire T1 mapping images. Afterwards, Gd-DTPA was used for dynamic enhanced scanning. T1 mapping images were collected 5 minutes before and after enhancement. Measure tumor size, T1 value before enhancement (T1pre), T1 value after enhancement (T1post), and calculate ΔT1, ΔT1%. SPSS and MedCalc software were used for analysis the differential diagnostic value of each quantitative parameter in each group, logistic regression combined with area under the curve (AUC) was constructed to evaluate the diagnostic value of each quantitative parameter and multi-parameter combination.Results There were statistically significant differences in ΔT1, ΔT1% and T1post among adenocarcinoma, squamous cell carcinoma and SCLC (P<0.05), but no difference in T1pre (P=0.506). The AUCs of T1post, ΔT1, and ΔT1% values to differentiate SCLC and non-small cell lung cancer (NSCLC) were 0.856, 0.805 and 0.864, combination of the three parameters can improve the diagnostic accuracy of differentiating SCLC and NSCLC (AUC=0.870, P<0.05). The AUCs of ΔT1 and ΔT1% values to differentiate adenocarcinoma and squamous cell carcinoma were 0.755 and 0.767, combination of the two could slightly improve the diagnostic accuracy (AUC=0.771, P>0.05). The AUCs of ΔT1%, T1post values to differentiate squamous cell carcinoma and SCLC were 0.788 and 0.818, combination of the two could improve the diagnostic accuracy (AUC=0.831, P>0.05). The AUCs of ΔT1%, T1post values to differentiate adenocarcinoma and SCLC is 0.895 and 0.873, combination of the two could improve the diagnostic accuracy (AUC=0.898, P>0.05).Conclusions T1 mapping can non-invasively and quantitatively obtain the T1 value of adenocarcinoma, squamous cell carcinoma and small cell lung cancer, and can be used to distinguish SCLC from NSCLC, as well as squamous cell carcinoma and adenocarcinoma, provide more accurate histological correlations and prognostic value in lung cancer.
[Keywords] lung cancer;adenocarcinoma;squamous cell carcinoma;small cell lung cancer;quantitative assessment;functional magnetic resonance imaging;T1 mapping;magnetic resonance imaging

ZHANG Wei1, 2   ZHAO Peng1, 3   GUO Wenxiu1   LIN Xiangtao1, 3*   ZHANG Qi3   HE Yu1   MA Wenjing3   YANG Yongqing1   WANG Yu1   DIAO Ruiyuan3  

1 Department of Medical Imaging, Shandong Provincial Hospital, Shandong University, Jinan 250021, China

2 MRI Room, the People's Hospital of LaoLing, Dezhou 253600, China

3 Department of Medical Imaging, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China

Corresponding author: LIN X T, E-mail: linxt616@163.com

Conflicts of interest   None.

Received  2023-03-01
Accepted  2023-12-01
DOI: 10.12015/issn.1674-8034.2023.12.006
Cite this article as: ZHANG W, ZHAO P, GUO W X, et al. Application of quantitative parameters based on T1 mapping sequence in identifying pathological types of lung cancer[J]. Chin J Magn Reson Imaging, 2023, 14(12): 33-39, 48. DOI:10.12015/issn.1674-8034.2023.12.006.

[1]
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
[2]
CAO M M, CHEN W Q. Interpretation on the global cancer statistics of GLOBOCAN 2020[J]. Chin J Front Med Sci Electron Version, 2021, 13(3): 63-69. DOI: 10.12037/YXQY.2021.03-10.
[3]
HOFFMAN P C, MAUER A M, VOKES E E. Lung cancer[J]. Lancet, 2000, 355(9202): 479-485. DOI: 10.1016/S0140-6736(00)82038-3.
[4]
ZHOU Q H, FAN Y G, WANG Y, et al. China national lung cancer screening guideline with low-dose computed tomography (2018 version)[J]. Chin J Lung Cancer, 2018, 21(2): 67-75. DOI: 10.3779/j.issn.1009-3419.2018.02.01.
[5]
MORGAN L, CHOI H, REID M, et al. Frequency of incidental findings and subsequent evaluation in low-dose computed tomographic scans for lung cancer screening[J]. Ann Am Thorac Soc, 2017, 14(9): 1450-1456. DOI: 10.1513/AnnalsATS.201612-1023OC.
[6]
HENZLER T, SCHMID-BINDERT G, SCHOENBERG S O, et al. Diffusion and perfusion MRI of the lung and mediastinum[J]. Eur J Radiol, 2010, 76(3): 329-336. DOI: 10.1016/j.ejrad.2010.05.005.
[7]
RADENKOVIC D, WEINGÄRTNER S, RICKETTS L, et al. T1 mapping in cardiac MRI[J]. Heart Fail Rev, 2017, 22(4): 415-430. DOI: 10.1007/s10741-017-9627-2.
[8]
YANG S Y, SHAN F, YAN Q Q, et al. A pilot study of native T1-mapping for focal pulmonary lesions in 3.0 T magnetic resonance imaging: size estimation and differential diagnosis[J]. J Thorac Dis, 2020, 12(5): 2517-2528. DOI: 10.21037/jtd.2020.03.42.
[9]
ALAMIDI D F, MORGAN A R, HUBBARD CRISTINACCE P L, et al. COPD patients have short lung magnetic resonance T1 relaxation time[J]. COPD, 2016, 13(2): 153-159. DOI: 10.3109/15412555.2015.1048851.
[10]
MA W J, YANG Y Q, WANG Y, et al. The application value of diffusion weighted imaging and enhanced T1 mapping in evaluating pathological types of lung cancer[J]. J Pract Radiol, 2022, 38(6): 893-896. DOI: 10.3969/j.issn.1002-1671.2022.06.006.
[11]
BUXTON R B. Introduction to functional magnetic resonance imaging[M]//Introduction to Functional Magnetic Resonance Imaging. Cambridge: Cambridge University Press, 2010: 65-66. DOI: 10.1017/cbo9780511605505.006.
[12]
ADAMS L C, RALLA B, JURMEISTER P, et al. Native T1 mapping as an in vivo biomarker for the identification of higher-grade renal cell carcinoma: correlation with histopathological findings[J]. Invest Radiol, 2019, 54(2): 118-128. DOI: 10.1097/RLI.0000000000000515.
[13]
SHAH N J, ZAITSEV M, STEINHOFF S, et al. A new method for fast multislice T(1) mapping[J]. Neuroimage, 2001, 14(5): 1175-1185. DOI: 10.1006/nimg.2001.0886.
[14]
TAYLOR A J, SALERNO M, DHARMAKUMAR R, et al. T1 mapping: basic techniques and clinical applications[J]. JACC Cardiovasc Imaging, 2016, 9(1): 67-81. DOI: 10.1016/j.jcmg.2015.11.005.
[15]
PALMISANO A, BENEDETTI G, FALETTI R, et al. Early T1 myocardial MRI mapping: value in detecting myocardial hyperemia in acute myocarditis[J]. Radiology, 2020, 295(2): 316-325. DOI: 10.1148/radiol.2020191623.
[16]
SHAH B, ANDERSON S W, SCALERA J, et al. Quantitative MR imaging: physical principles and sequence design in abdominal imaging[J]. Radiographics, 2011, 31(3): 867-880. DOI: 10.1148/rg.313105155.
[17]
XU J, ZHUANG B Y, SIRAJUDDIN A, et al. MRI T1 mapping in hypertrophic cardiomyopathy: evaluation in patients without late gadolinium enhancement and hemodynamic obstruction[J]. Radiology, 2020, 294(2): 275-286. DOI: 10.1148/radiol.2019190651.
[18]
JIA T Y, QIN P X, HU F, et al. Principle of T1 mapping technique and its research progress in myocardial quantification[J]. Chin J Magn Reson Imag, 2022, 13(3): 151-158. DOI: 10.12015/issn.1674-8034.2022.03.037.
[19]
QIN X L, HUANG Z K, LONG L L, et al. The value of gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid enhanced T1 mapping in dysplastic nodule and hepatocellular carcinoma with different degrees of differentiation[J]. Chin J Radiol, 2018, 52(8): 603-607. DOI: 10.3760/cma.j.issn.1005?1201.2018.08.007.
[20]
LIU Z W, YANG S M, CHEN H X, et al. Correlation between Gd-EOB-DTPA enhanced MRI T1 mapping and Ki-67 expression in hepatocellular carcinoma[J]. Chin J Magn Reson Imag, 2022, 13(9): 35-40, 52. DOI: 10.12015/issn.1674-8034.2022.09.007.
[21]
ADAMS L C, RALLA B, JURMEISTER P, et al. Native T1 mapping as an in vivo biomarker for the identification of higher-grade renal cell carcinoma: correlation with histopathological findings[J]. Invest Radiol, 2019, 54(2): 118-128. DOI: 10.1097/RLI.0000000000000515.
[22]
WANG S, LI J H, ZHU D R, et al. Contrast-enhanced magnetic resonance (MR) T1 mapping with low-dose gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA) is promising in identifying clear cell renal cell carcinoma histopathological grade and differentiating fat-poor angiomyolipoma[J]. Quant Imaging Med Surg, 2020, 10(5): 988-998. DOI: 10.21037/qims-19-723.
[23]
CONTE G M, ALTABELLA L, CASTELLANO A, et al. Comparison of T1 mapping and fixed T1 method for dynamic contrast-enhanced MRI perfusion in brain gliomas[J]. Eur Radiol, 2019, 29(7): 3467-3479. DOI: 10.1007/s00330-019-06122-x.
[24]
ZHU L, LAI Y M, MAKOWSKI M, et al. Native T1 mapping of autoimmune pancreatitis as a quantitative outcome surrogate[J]. Eur Radiol, 2019, 29(8): 4436-4446. DOI: 10.1007/s00330-018-5987-9.
[25]
MIRSADRAEE S, TSE M, KERSHAW L, et al. T1 characteristics of interstitial pulmonary fibrosis on 3T MRI-a predictor of early interstitial change?[J]. Quant Imaging Med Surg, 2016, 6(1): 42-49. DOI: 10.3978/j.issn.2223-4292.2016.02.02.
[26]
YAN Q Q, YI Y Q, SHEN J, et al. Preliminary study of 3T-MRI native T1-mapping radiomics in differential diagnosis of non-calcified solid pulmonary nodules/masses[J/OL]. Cancer Cell Int, 2021, 21(1): 539 [2023-02-20]. https://pubmed.ncbi.nlm.nih.gov/34663307/. DOI: 10.1186/s12935-021-02195-1.
[27]
NEEMUCHWALA F, GHADIMI MAHANI M, PANG Y X, et al. Lung T1 mapping magnetic resonance imaging in the assessment of pulmonary disease in children with cystic fibrosis: a pilot study[J]. Pediatr Radiol, 2020, 50(7): 923-934. DOI: 10.1007/s00247-020-04638-9.
[28]
WANG Z Q, CHU F N, BAI B M, et al. T1 maps in upper abdomen: comparison of Look-Locker and B1-corrected variable-flip-angle (VFA) methods[J]. Chin J Acad Radiol, 2023, 6(1): 41-46. DOI: 10.1007/s42058-022-00114-5.
[29]
YOON J H, LEE J M, KIM E, et al. Quantitative liver function analysis: volumetric T1 mapping with fast multisection B1 inhomogeneity correction in hepatocyte-specific contrast-enhanced liver MR imaging[J]. Radiology, 2017, 282(2): 408-417. DOI: 10.1148/radiol.2016152800.
[30]
JIANG J Q, FU Y G, ZHOU X, et al. B1-corrected T1 mapping for measuring lung cancer native T1 value and correlations with apparent diffusion coefficient and Ki-67 expression[J]. Chin J Med Imag Technol, 2022, 38(11): 1652-1656. DOI: 10.13929/j.issn.1003-3289.2022.11.013.
[31]
LI G Z, HUANG R J, ZHU M, et al. Native T1-mapping and diffusion-weighted imaging (DWI) can be used to identify lung cancer pathological types and their correlation with Ki-67 expression[J]. J Thorac Dis, 2022, 14(2): 443-454. DOI: 10.21037/jtd-22-77.
[32]
LU Z Y. Application of T1 mapping and T2 mapping sequence in diagnosis of breast cancer[D]. Lanzhou: Lanzhou University, 2021. DOI: 10.27204/d.cnki.glzhu.2021.003018.
[33]
YANG M, LI S J, LIU J, et al. Application value of T1 mapping imaging and diffusion kurtosis imaging in the evaluation of histological features of cervical cancer[J]. Henan Med Res, 2021, 30(6): 978-982. DOI: 10.3969/j.issn.1004-437X.2021.06.005.
[34]
ZHANG F F, GAO X M, CHENG J L, et al. Feasibility of quantitative T1-mapping reflecting histological features of cervical cancer: a primary study[J]. J Clin Radiol, 2020, 39(9): 1807-1811. DOI: 10.13437/j.cnki.jcr.2020.09.029.
[35]
RAVOORI M K, NISHIMURA M, SINGH S P, et al. Tumor T1 relaxation time for assessing response to bevacizumab anti-angiogenic therapy in a mouse ovarian cancer model[J/OL]. PLoS One, 2015, 10(6): e0131095 [2023-02-20]. https://pubmed.ncbi.nlm.nih.gov/26098849/. DOI: 10.1371/journal.pone.0131095.
[36]
MCSHEEHY P M, WEIDENSTEINER C, CANNET C, et al. Quantified tumor t1 is a generic early-response imaging biomarker for chemotherapy reflecting cell viability[J]. Clin Cancer Res, 2010, 16(1): 212-225. DOI: 10.1158/1078-0432.CCR-09-0686.

PREV A preliminary study on predicting glioblastoma recurrence and postoperative survival time through MRI imaging radiomics
NEXT Diagnostic value of DCE-MRI texture analysis for molecular typing of breast cancer
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn