Share:
Share this content in WeChat
X
Clinical Article
Quantitative evaluation of sacroiliac arthritis activity in ankylosing spondylitis based on magnetic resonance image compilation sequences
TIAN Zhaorong  ZHANG Liping  TIAN Bo  CHI Shuhong  WANG Jing  XU Fenling  WANG Zhijun  GONG Rui 

Cite this article as: TIAN Z R, ZHANG L P, TIAN B, et al. Quantitative evaluation of sacroiliac arthritis activity in ankylosing spondylitis based on magnetic resonance image compilation sequences[J]. Chin J Magn Reson Imaging, 2023, 14(12): 78-84. DOI:10.12015/issn.1674-8034.2023.12.013.


[Abstract] Objective To explore the feasibility of using magnetic resonance image compilation (MAGiC) parameters to quantitatively evaluate changes of sacroiliac joint in ankylosing spondylitis (AS), in order to provide a quantitative index for the evaluation of sacroiliac joint inflammatory activity in AS. And to evaluate the correlations of T1, T2 and proton density (PD) values with Bath Ankylosing Spondylitis Disease Activity Index (BASDAI) and Spondyloarthritis Research Consortium of Canada (SPARCC) scores.Materials and Methods A total of 78 AS patients with sacroiliitis and 35 healthy controls were enrolled. All patients were scanned using a GE SIGNATM Architect 3.0 T MRI scanner by T1WI, fat-saturated T2-weighted imaging (FS-T2WI) and MAGiC sequence of the sacroiliac joints. According to Ankylosing Spondylitis Disease Activity Score (ASDAS) scores and C-reactive protein (CRP), the 78 patients were divided into an active group (40 cases) and an inactive group (38 cases). The T1, T2 and PD values of the subchondral bone marrow were measured in the active group, the inactive group, and the healthy control group using the MAGiC sequence. The T1, T2 and PD values of the active, inactive, and healthy groups were compared using one-way analysis of variance (ANOVA). Receiver operating characteristic (ROC) curves were used to analyze the diagnostic efficacy of T1、T2 and PD values for sacroiliitis. The correlations of the T1, T2 and PD values with the BASDAI and SPARCC scores were analyzed using Spearman's rho.Results The T1 values [(531.04±60.28) ms] in the active group were lower than those in the inactive group [(691.50±72.44) ms], and lower than those in the healthy control group [(933.23±100.98) ms], t=-11.517, P<0.001. T2 and PD values in the active group [(119.00±9.56) ms, (86.03±14.79) pu] were both higher than those in the inactive group [(96.61±8.86) ms, (68.12±7.77) pu], and higher than those in the healthy control group [(78.94±6.20) ms, (53.71±6.69) pu], t=-15.332, 15.972, all P<0.001; the area under the ROC curve (AUC) of T1, T2 and PD values between the active and inactive groups were 0.965 (95% CI: 0.949-0.991), 0.981 (95% CI: 0.970-0.998), 0.840 (95% CI: 0.842-0.923), respectively. The T1, T2 and PD values of the AS patients were positively correlated with BASDAI scores, and the correlation coefficients (r) were -0.771, 0.914 and 0.846 (all P<0.001), respectively. And positively correlated with BASDAI scores, and the correlation coefficients (r) were -0.924, 0.915 and 0.938 (all P<0.001), respectively.Conclusions MAGiC parameters can be used to quantitatively assess the activity of AS, especially, T2 value can serve as a biological marker for the activity of sacroiliac arthritis, providing imaging basis for clinical diagnosis.
[Keywords] ankylosing spondylitis;sacroiliitis;magnetic resonance imaging;magnetic resonance image compilation;activity

TIAN Zhaorong1   ZHANG Liping1   TIAN Bo1   CHI Shuhong2   WANG Jing3   XU Fenling4   WANG Zhijun1   GONG Rui1*  

1 Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan 750001, China

2 Department of Rheumatology, General Hospital of Ningxia Medical University, Yinchuan 750001, China

3 Department of Radiology, Shizuishan Third People's Hospital, Shizuishan 750002, China

4 Ningxia medical university, Yinchuan 750001, China

Corresponding author: GONG R, E-mail: ruigong918@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS Key Research and Development Project of Ningxia Hui Autonomous Region (No. 2021BEG03033).
Received  2023-08-08
Accepted  2023-12-07
DOI: 10.12015/issn.1674-8034.2023.12.013
Cite this article as: TIAN Z R, ZHANG L P, TIAN B, et al. Quantitative evaluation of sacroiliac arthritis activity in ankylosing spondylitis based on magnetic resonance image compilation sequences[J]. Chin J Magn Reson Imaging, 2023, 14(12): 78-84. DOI:10.12015/issn.1674-8034.2023.12.013.

[1]
WU J L, YAN L F, CHAI K X. Systemic immune-inflammation index is associated with disease activity in patients with ankylosing spondylitis[J/OL]. J Clin Lab Anal, 2021, 35(9): e23964 [2023-08-07]. https://pubmed.ncbi.nlm.nih.gov/34418163/. DOI: 10.1002/jcla.23964.
[2]
WANG D D, YIN H J, LIU W L, et al. Comparative analysis of the diagnostic values of T2 mapping and diffusion-weighted imaging for sacroiliitis in ankylosing spondylitis[J]. Skeletal Radiol, 2020, 49(10): 1597-1606. DOI: 10.1007/s00256-020-03442-8.
[3]
DE JONGH J, VERWEIJ N J F, YAQUB M, et al. 18F]Fluoride PET provides distinct information on disease activity in ankylosing spondylitis as compared to MRI and conventional radiography[J]. Eur J Nucl Med Mol Imaging, 2023, 50(5): 1351-1359. DOI: 10.1007/s00259-022-06080-5.
[4]
BARALIAKOS X, KUEHN A, TSIAMI S, et al. The influence of age on the prevalence of inflammatory and structural MRI lesions in the sacroiliac joints of patients with and without axial spondyloarthritis[J]. Rheumatology, 2023, 62(4): 1519-1525. DOI: 10.1093/rheumatology/keac505.
[5]
SOULARD J, VAILLANT J, BAILLET A, et al. Translation and French linguistic validation of the bath ankylosing spondylitis functional index and the bath ankylosing spondylitis global score in patients with axial spondyloarthritis[J]. Curr Rheumatol Rev, 2023, 19(4): 449-454. DOI: 10.2174/1573397118666220829124234.
[6]
ZHANG M C, ZHOU L, HUANG N, et al. Assessment of active and inactive sacroiliitis in patients with ankylosing spondylitis using quantitative dynamic contrast-enhanced MRI[J]. J Magn Reson Imaging, 2017, 46(1): 71-78. DOI: 10.1002/jmri.25559.
[7]
PLIER M, TOUKAP A N, MICHOUX N, et al. Diagnostic performance of sacroiliac joint MRI and added value of spine MRI to detect active spondyloarthritis[J]. Diagn Interv Imaging, 2021, 102(3): 171-180. DOI: 10.1016/j.diii.2020.07.001.
[8]
GUO C, ZHENG K, XIE Z, et al. Intravoxel incoherent motion diffusion-weighted imaging as a quantitative tool for evaluating disease activity in patients with axial spondyloarthritis[J/OL]. Clin Radiol, 2022, 77(6): e434-e441 [2023-08-07]. https://pubmed.ncbi.nlm.nih.gov/35232574/. DOI: 10.1016/j.crad.2022.02.004.
[9]
ZHAN Y Y, ZHANG K, ZHENG J, et al. Quantitative parameters of MR compilation sequence for evaluation on axial spondyloarthritis sacroiliac joint disease[J]. Chin J Med Imag Technol, 2021, 37(8): 1214-1218. DOI: 10.13929/j.issn.1003-3289.2021.08.024.
[10]
QIN J, LI J, YANG H, et al. Values of intravoxel incoherent motion diffusion weighted imaging and dynamic contrast-enhanced MRI in evaluating the activity of sacroiliitis in ankylosing spondylitis of rat model[J]. Magn Reson Imaging, 2020, 68: 30-35. DOI: 10.1016/j.mri.2020.01.007.
[11]
TIAN Z R, GONG R, SUN J, et al. Magnetic resonance image complication in the assessment of idiopathic inflammatory myopathies[J]. Chin J Med Imag, 2021, 29(11): 1149-1153. DOI: 10.3969/j.issn.1005-5185.2021.11.021.
[12]
LOU B H, JIANG Y W, LI C M, et al. Quantitative analysis of synthetic magnetic resonance imaging in Alzheimer's disease[J/OL]. Front Aging Neurosci, 2021, 13: 638731 [2023-08-07]. https://pubmed.ncbi.nlm.nih.gov/33912023/. DOI: 10.3389/fnagi.2021.638731.
[13]
ARITA Y, TAKAHARA T, YOSHIDA S, et al. Quantitative assessment of bone metastasis in prostate cancer using synthetic magnetic resonance imaging[J]. Invest Radiol, 2019, 54(10): 638-644. DOI: 10.1097/RLI.0000000000000579.
[14]
MACHADO P, LANDEWÉ R, LIE E, et al. Ankylosing Spondylitis Disease Activity Score (ASDAS): defining cut-off values for disease activity states and improvement scores[J]. Ann Rheum Dis, 2011, 70(1): 47-53. DOI: 10.1136/ard.2010.138594.
[15]
TENÓRIO A P M, FALEIROS M C, JUNIOR J R F, et al. A study of MRI-based radiomics biomarkers for sacroiliitis and spondyloarthritis[J]. Int J Comput Assist Radiol Surg, 2020, 15(10): 1737-1748. DOI: 10.1007/s11548-020-02219-7.
[16]
ALBANO D, BIGNONE R, CHIANCA V, et al. T2 mapping of the sacroiliac joints in patients with axial spondyloarthritis[J/OL]. Eur J Radiol, 2020, 131: 109246 [2023-08-07]. https://pubmed.ncbi.nlm.nih.gov/32911127/. DOI: 10.1016/j.ejrad.2020.109246.
[17]
HAO F, YU Y M, CHEN P F, et al. The value of DCE-MRI parameters in the evaluation of inflammatory activity of sacroiliac joint in ankylosing spondylitis[J]. J China Clin Med Imag, 2023, 34(5): 368-372. DOI: 10.12117/jccmi.2023.05.015.
[18]
BRESSEM K K, ADAMS L C, PROFT F, et al. Deep learning detects changes indicative of axial spondyloarthritis at MRI of sacroiliac joints[J]. Radiology, 2022, 305(3): 655-665. DOI: 10.1148/radiol.212526.
[19]
DEPPE D, HERMANN K G, PROFT F, et al. CT-like images of the sacroiliac joint generated from MRI using susceptibility-weighted imaging (SWI) in patients with axial spondyloarthritis[J/OL]. RMD Open, 2021, 7(2): e001656 [2023-08-07]. https://pubmed.ncbi.nlm.nih.gov/34049998/. DOI: 10.1136/rmdopen-2021-001656.
[20]
MARNAS G, BERNARDY C, COLE A, et al. Spine abnormalities associated with bone edema on sacroiliac joints MRI in patients with non-inflammatory chronic back pain[J/OL]. Joint Bone Spine, 2022, 89(6): 105436 [2023-08-07]. https://pubmed.ncbi.nlm.nih.gov/35777553/. DOI: 10.1016/j.jbspin.2022.105436.
[21]
HUANG Z J, MI C D, DU Y, et al. The value of the spondyloarthritis research consortium of ceanada magnetic resonance imaging sacroiliac joint inflammation score and structural score in evaluating the activity of axial spondyloarthritis[J]. Chin J Rheumatol, 2019, 23(9): 612-616. DOI: 10.3760/cma.j.issn.1007-7480.2019.09.007.
[22]
YONEYAMA K, KITANAKA Y, TANAKA O, et al. Cardiovascular magnetic resonance imaging in heart failure[J]. Expert Rev Cardiovasc Ther, 2018, 16(4): 237-248. DOI: 10.1080/14779072.2018.1445525.
[23]
SHIGUETOMI-MEDINA J M, RAMIREZ-GL J L, STØDKILDE-JØRGENSEN H, et al. Systematized water content calculation in cartilage using T1-mapping MR estimations: design and validation of a mathematical model[J]. J Orthop Traumatol, 2017, 18(3): 217-220. DOI: 10.1007/s10195-016-0433-8.
[24]
MITTAL S, PRADHAN G, SINGH S, et al. T1 and T2 mapping of articular cartilage and menisci in early osteoarthritis of the knee using 3-Tesla magnetic resonance imaging[J]. Pol J Radiol, 2019, 84: e549-e564 [2023-08-07]. https://pubmed.ncbi.nlm.nih.gov/32082454/. DOI: 10.5114/pjr.2019.91375.
[25]
YU S, SU J W, LIN M G, et al. A preliminary study on the efficacy of tumor necrosis factor alpha antagonists in the treatment of axial spondyloarthropathy by T1-mapping technique[J]. Chin J Magn Reson Imag, 2022, 13(1): 21-25, 36. DOI: 10.12015/issn.1674-8034.2022.01.005.
[26]
LEE C N, CHOI Y J, JEON K J, et al. Synthetic magnetic resonance imaging for quantitative parameter evaluation of temporomandibular joint disorders[J/OL]. Dentomaxillofac Radiol, 2021, 50(5): 20200584 [2023-08-07]. https://pubmed.ncbi.nlm.nih.gov/33544630/. DOI: 10.1259/dmfr.20200584.
[27]
BRUNO F, ARRIGONI F, PALUMBO P, et al. New advances in MRI diagnosis of degenerative osteoarthropathy of the peripheral joints[J]. Radiol Med, 2019, 124(11): 1121-1127. DOI: 10.1007/s11547-019-01003-1.
[28]
GONG J S, PEDOIA V, FACCHETTI L, et al. Bone marrow edema-like lesions (BMELs) are associated with higher T1ρ and T2 values of cartilage in anterior cruciate ligament (ACL)-reconstructed knees: a longitudinal study[J]. Quant Imaging Med Surg, 2016, 6(6): 661-670. DOI: 10.21037/qims.2016.12.11.
[29]
AIYER S, UDAR S, KHARAT A, et al. Utility of selected sequence MRI imaging of the axial skeleton in the diagnosis of axial spondyloarthritis[J/OL]. J Clin Orthop Trauma, 2022, 32: 101983 [2023-08-07]. https://pubmed.ncbi.nlm.nih.gov/36035783/. DOI: 10.1016/j.jcot.2022.101983.
[30]
TENÓRIO A P M, FALEIROS M C, JUNIOR J R F, et al. A study of MRI-based radiomics biomarkers for sacroiliitis and spondyloarthritis[J]. Int J Comput Assist Radiol Surg, 2020, 15(10): 1737-1748. DOI: 10.1007/s11548-020-02219-7.
[31]
ZHANG K, LIU C R, ZHU Y F, et al. Synthetic MRI in the detection and quantitative evaluation of sacroiliac joint lesions in axial spondyloarthritis[J/OL]. Front Immunol, 2022, 13: 1000314 [2023-08-07]. https://pubmed.ncbi.nlm.nih.gov/36225919/. DOI: 10.3389/fimmu.2022.1000314.
[32]
BRADBURY L A, HOLLIS K A, GAUTIER B, et al. Diffusion-weighted imaging is a sensitive and specific magnetic resonance sequence in the diagnosis of ankylosing spondylitis[J]. J Rheumatol, 2018, 45(6): 771-778. DOI: 10.3899/jrheum.170312.
[33]
MORBÉE L, VEREECKE E, LALOO F, et al. Common incidental findings on sacroiliac joint MRI: added value of MRI-based synthetic CT[J]. Eur J Radiol, 2023, 158: 110651 [2023-08-07]. https://pubmed.ncbi.nlm.nih.gov/36535080/. DOI: 10.1016/j.ejrad.2022.110651.
[34]
GARRETT S, JENKINSON T, KENNEDY L G, et al. A new approach to defining disease status in ankylosing spondylitis: the Bath Ankylosing Spondylitis Disease Activity Index[J]. J Rheumatol, 1994, 21(12): 2286-2291.
[35]
WANG F X, CHU C, ZHU L, et al. Whole-lesion ADC histogram analysis and the spondyloarthritis research consortium of Canada (SPARCC) MRI index in evaluating the disease activity of ankylosing spondylitis[J]. J Magn Reson Imaging, 2019, 50(1): 114-126. DOI: 10.1002/jmri.26568.
[36]
KARINO K, KONO M, KONO M, et al. Myofascia-dominant involvement on whole-body MRI as a risk factor for rapidly progressive interstitial lung disease in dermatomyositis[J]. Rheumatology, 2020, 59(7): 1734-1742. DOI: 10.1093/rheumatology/kez642.

PREV Application of DCE-MRI combined with IVIM quantitative parameters in the treatment evaluation of brucellosis spondylitis
NEXT Application value of glutamate chemical exchange saturation transfer imaging in radiation-induced brain injury rat
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn