Share:
Share this content in WeChat
X
Original Article
Application value of glutamate chemical exchange saturation transfer imaging in radiation-induced brain injury rat
LI Guodong  LIU Yan  LI Hao  LIU Caiyun  LI Xianglin  LI Qinglong  WENG Na  BIN Li  HUANG Danqi  WANG Xu 

Cite this article as: LI G D, LIU Y, LI H, et al. Application value of glutamate chemical exchange saturation transfer imaging in radiation-induced brain injury rat[J]. Chin J Magn Reson Imaging, 2023, 14(12): 85-90, 97. DOI:10.12015/issn.1674-8034.2023.12.014.


[Abstract] Objective To investigate the value of 7.0 T magnetic resonance glutamate chemical exchange saturation transfer (GluCEST) imaging for assessing hippocampal glutamate changes in a rat model of radiation brain injury.Materials and Methods The experimental rats were randomly divided into control group (n=9) and radiation-induced brain injury (RBI) group (n=9). Rats in the RBI group were irradiated using an X-ray irradiator and subjected to a water maze experiment 4 weeks later. Chemical exchange saturation transfer (CEST) sequences were collected using 7.0 T small animal magnetic resonance and hippocampal glutamate concentrations were measured by high-performance liquid chromatography (HPLC). The t-tests were performed for differences in GluCEST and glutamate concentrations in the hippocampal brain regions between the two groups. Pearson correlation analyses were performed for the relationship between GluCEST and HPLC and between GluCEST and water maze.Results Compared to control group, rats in the RBI group had impaired cognitive function and reduced hippocampal GluCEST (P=0.008) after 4 weeks, and reduced glutamate levels were confirmed by HPLC measurements (P=0.003). Correlation analysis showed a positive correlation between glutamate concentration by HPLC and GluCEST (r=0.71, P<0.001), and spatial memory also showed a consistent positive correlation with hippocampal GluCEST (r=0.50, P=0.034).Conclusions GluCEST imaging visualizes and evaluates hippocampal glutamate changes of RBI rats and might be used as an imaging biomarker for metabolic changes in vivo, which might be useful for the monitoring and intervention of concomitant radiation damage after radiotherapy.
[Keywords] radiation brain injury;cognitive impairment;radiation therapy;chemical exchange saturation transfer;magnetic resonance imaging

LI Guodong1   LIU Yan2   LI Hao2   LIU Caiyun1   LI Xianglin2   LI Qinglong3   WENG Na1   BIN Li1   HUANG Danqi1   WANG Xu1*  

1 Department of Nuclear Medicine, Binzhou Medical University Hospital, Binzhou 256600, China

2 School of Medical Imaging, Binzhou Medical University, Yantai 264003, China

3 Department of Magenetic Resonance Imaging, Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou 450000, China

Corresponding author: WANG X, E-mail: wangxu1978@163.com#Co first author: LIU Y

Conflicts of interest   None.

ACKNOWLEDGMENTS National Natural Science Foundation of China (No. 81771828, 11805247).
Received  2023-06-05
Accepted  2023-11-24
DOI: 10.12015/issn.1674-8034.2023.12.014
Cite this article as: LI G D, LIU Y, LI H, et al. Application value of glutamate chemical exchange saturation transfer imaging in radiation-induced brain injury rat[J]. Chin J Magn Reson Imaging, 2023, 14(12): 85-90, 97. DOI:10.12015/issn.1674-8034.2023.12.014.

[1]
CHANDRA R A, KEANE F K, VONCKEN F E M, et al. Contemporary radiotherapy: present and future[J]. Lancet, 2021, 398(10295): 171-184. DOI: 10.1016/S0140-6736(21)00233-6.
[2]
MAKALE M T, MCDONALD C R, HATTANGADI-GLUTH J A, et al. Mechanisms of radiotherapy-associated cognitive disability in patients with brain tumours[J]. Nat Rev Neurol, 2017, 13(1): 52-64. DOI: 10.1038/nrneurol.2016.185.
[3]
MATSUI J K, PERLOW H K, BAIYEE C, et al. Quality of life and cognitive function evaluations and interventions for patients with brain metastases in the radiation oncology clinic[J/OL]. Cancers, 2022, 14(17): 4301 [2023-06-04]. https://pubmed.ncbi.nlm.nih.gov/36077835/. DOI: 10.3390/cancers14174301.
[4]
ZHANG D N, ZOU Q Q, WANG M L, et al. Research progress of MRI on pathological changes and cognitive impairment of radiation-induced brain injury[J]. Chin J Magn Reson Imag, 2023, 14(5): 155-160. DOI: 10.12015/issn.1674-8034.2023.05.027.
[5]
FARJAM R, PRAMANIK P, ARYAL M P, et al. A radiation-induced hippocampal vascular injury surrogate marker predicts late neurocognitive dysfunction[J]. Int J Radiat Oncol Biol Phys, 2015, 93(4): 908-915. DOI: 10.1016/j.ijrobp.2015.08.014.
[6]
TRINGALE K R, NGUYEN T T, KARUNAMUNI R, et al. Quantitative imaging biomarkers of damage to critical memory regions are associated with post-radiation therapy memory performance in brain tumor patients[J]. Int J Radiat Oncol Biol Phys, 2019, 105(4): 773-783. DOI: 10.1016/j.ijrobp.2019.08.003.
[7]
VOON N S, MANAN H A, YAHYA N. Role of resting-state functional MRI in detecting brain functional changes following radiotherapy for head and neck cancer: a systematic review and meta-analysis[J]. Strahlenther Onkol, 2023, 199(8): 706-717. DOI: 10.1007/s00066-023-02089-3.
[8]
TAKADO Y, TAKUWA H, SAMPEI K, et al. MRS-measured glutamate versus GABA reflects excitatory versus inhibitory neural activities in awake mice[J]. J Cereb Blood Flow Metab, 2022, 42(1): 197-212. DOI: 10.1177/0271678X211045449.
[9]
RIDEAUX R, EHRHARDT S E, WARDS Y, et al. On the relationship between GABA+ and glutamate across the brain[J/OL]. NeuroImage, 2022, 257: 119273 [2023-06-04]. https://pubmed.ncbi.nlm.nih.gov/35526748/. DOI: 10.1016/j.neuroimage.2022.119273.
[10]
KOUSH Y, ROTHMAN D L, BEHAR K L, et al. Human brain functional MRS reveals interplay of metabolites implicated in neurotransmission and neuroenergetics[J]. J Cereb Blood Flow Metab, 2022, 42(6): 911-934. DOI: 10.1177/0271678X221076570.
[11]
POSPISIL P, KAZDA T, HYNKOVA L, et al. Post-WBRT cognitive impairment and hippocampal neuronal depletion measured by in vivo metabolic MR spectroscopy: results of prospective investigational study[J]. Radiother Oncol, 2017, 122(3): 373-379. DOI: 10.1016/j.radonc.2016.12.013.
[12]
LUO X R, REN Q F, LUO M F, et al. Glutamate chemical exchange saturation transfer imaging and functional alterations of hippocampus in rat depression model: a pilot study[J]. J Magn Reson Imaging, 2021, 54(6): 1967-1976. DOI: 10.1002/jmri.27850.
[13]
WU M Y, ZOU W J, YU P, et al. Cranial irradiation impairs intrinsic excitability and synaptic plasticity of hippocampal CA1 pyramidal neurons with implications for cognitive function[J]. Neural Regen Res, 2022, 17(10): 2253-2259. DOI: 10.4103/1673-5374.336875.
[14]
DUMAN J G, DINH J, ZHOU W, et al. Memantine prevents acute radiation-induced toxicities at hippocampal excitatory synapses[J]. Neuro Oncol, 2018, 20(5): 655-665. DOI: 10.1093/neuonc/nox203.
[15]
WEN Q Q, WANG K, HSU Y C, et al. Chemical exchange saturation transfer imaging for epilepsy secondary to tuberous sclerosis complex at 3 T: Optimization and analysis[J/OL]. NMR Biomed, 2021, 34(9): e4563 [2023-06-04]. https://pubmed.ncbi.nlm.nih.gov/34046976/. DOI: 10.1002/nbm.4563.
[16]
NICOLO J P, MOFFAT B, WRIGHT D K, et al. 7T magnetic resonance imaging quantification of brain glutamate in acute ischaemic stroke[J]. J Stroke, 2021, 23(2): 281-284. DOI: 10.5853/jos.2020.04784.
[17]
LEE D W, WOO C W, WOO D C, et al. Regional mapping of brain glutamate distributions using glutamate-weighted chemical exchange saturation transfer imaging[J/OL]. Diagnostics, 2020, 10(8): 571 [2023-06-04]. https://pubmed.ncbi.nlm.nih.gov/32784483/. DOI: 10.3390/diagnostics10080571.
[18]
WANG K, WEN Q Q, WU D C, et al. Lateralization of temporal lobe epileptic foci with automated chemical exchange saturation transfer measurements at 3 Tesla[J/OL]. EBioMedicine, 2023, 89: 104460 [2023-06-04]. https://pubmed.ncbi.nlm.nih.gov/36773347/. DOI: 10.1016/j.ebiom.2023.104460.
[19]
XU Y, ZHUANG Z R, ZHENG H Y, et al. Glutamate chemical exchange saturation transfer (GluCEST) magnetic resonance imaging of rat brain with acute carbon monoxide poisoning[J/OL]. Front Neurol, 2022, 13: 865970 [2023-06-04]. https://pubmed.ncbi.nlm.nih.gov/35665050/. DOI: 10.3389/fneur.2022.865970.
[20]
PÉROT J B, CÉLESTINE M, PALOMBO M, et al. Longitudinal multimodal MRI characterization of a knock-in mouse model of Huntington's disease reveals early gray and white matter alterations[J]. Hum Mol Genet, 2022, 31(21): 3581-3596. DOI: 10.1093/hmg/ddac036.
[21]
CEMBER A T J, NANGA R P R, REDDY R. Glutamate-weighted CEST (gluCEST) imaging for mapping neurometabolism: an update on the state of the art and emerging findings from in vivo applications[J/OL]. NMR Biomed, 2023, 36(6): e4780 [2023-06-04]. https://pubmed.ncbi.nlm.nih.gov/35642353/. DOI: 10.1002/nbm.4780.
[22]
ZHOU J Y, TRYGGESTAD E, WEN Z B, et al. Differentiation between glioma and radiation necrosis using molecular magnetic resonance imaging of endogenous proteins and peptides[J]. Nat Med, 2011, 17(1): 130-134. DOI: 10.1038/nm.2268.
[23]
PARENTE A, DE VRIES E F J, VAN WAARDE A, et al. The acute and early effects of whole-brain irradiation on glial activation, brain metabolism, and behavior: a positron emission tomography study[J]. Mol Imaging Biol, 2020, 22(4): 1012-1020. DOI: 10.1007/s11307-020-01483-y.
[24]
YANG L, LI M Z, ZHAN Y, et al. The impact of ischemic stroke on gray and white matter injury correlated with motor and cognitive impairments in permanent MCAO rats: a multimodal MRI-based study[J/OL]. Front Neurol, 2022, 13: 834329 [2023-06-04]. https://pubmed.ncbi.nlm.nih.gov/35309583/. DOI: 10.3389/fneur.2022.834329.
[25]
LIU R B, ZHANG H X, QIAN Y, et al. Frequency-stabilized chemical exchange saturation transfer imaging with real-time free-induction-decay readout[J]. Magn Reson Med, 2021, 85(3): 1322-1334. DOI: 10.1002/mrm.28513.
[26]
FRANCO-PÉREZ J, MONTES S, SÁNCHEZ-HERNÁNDEZ J, et al. Whole-brain irradiation differentially modifies neurotransmitters levels and receptors in the hypothalamus and the prefrontal cortex[J/OL]. Radiat Oncol, 2020, 15(1): 269 [2023-06-04]. https://pubmed.ncbi.nlm.nih.gov/33228731/. DOI: 10.1186/s13014-020-01716-y.
[27]
MORAVAN M J, OLSCHOWKA J A, WILLIAMS J P, et al. Cranial irradiation leads to acute and persistent neuroinflammation with delayed increases in T-cell infiltration and CD11c expression in C57BL/6 mouse brain[J]. Radiat Res, 2011, 176(4): 459-473. DOI: 10.1667/rr2587.1.
[28]
JI S J, TIAN Y, LU Y, et al. Irradiation-induced hippocampal neurogenesis impairment is associated with epigenetic regulation of bdnf gene transcription[J/OL]. Brain Res, 2014, 1577: 77-88. [2023-06-04]. https://pubmed.ncbi.nlm.nih.gov/25020123/. DOI: 10.1016/j.brainres.2014.06.035.
[29]
CHANG Y Q, ZHOU G J, WEN H M, et al. Treatment of radiation-induced brain injury with bisdemethoxycurcumin[J]. Neural Regen Res, 2023, 18(2): 416-421. DOI: 10.4103/1673-5374.346549.
[30]
ZHU Z J, MA H J, SHEN Y Y, et al. A study on the imaging of brain tumor using glutamate chemical exchange saturation transfer (GluCEST)[J/OL]. Funct Mol Med Imag Electron Ed, 2017, 6(4): 1295-1301. [2023-06-04]. https://doi.org/10.3969/j.issn.2095-2252.2017.04.002. DOI: 10.3969/j.issn.2095-2252.2017.04.002.
[31]
MEHRABIAN H, CHAN R W, SAHGAL A, et al. Chemical exchange saturation transfer MRI for differentiating radiation necrosis from tumor progression in brain metastasis-application in a clinical setting[J]. J Magn Reson Imaging, 2023, 57(6): 1713-1725. DOI: 10.1002/jmri.28440.
[32]
BROWN R J, JUN B J, CUSHMAN J D, et al. Changes in imaging and cognition in juvenile rats after whole-brain irradiation[J]. Int J Radiat Oncol Biol Phys, 2016, 96(2): 470-478. DOI: 10.1016/j.ijrobp.2016.06.013.
[33]
BÁLENTOVÁ S, HNILICOVÁ P, KALENSKÁ D, et al. Effect of whole-brain irradiation on the specific brain regions in a rat model: metabolic and histopathological changes[J/OL]. Neurotoxicology, 2017, 60: 70-81 [2023-06-04]. https://pubmed.ncbi.nlm.nih.gov/28330762/. DOI: 10.1016/j.neuro.2017.03.005.
[34]
CAI K J, HARIS M, SINGH A, et al. Magnetic resonance imaging of glutamate[J]. Nat Med, 2012, 18(2): 302-306. DOI: 10.1038/nm.2615.
[35]
ZENG Z, DONG Y, ZOU L, et al. GluCEST imaging and structural alterations of the bilateral hippocampus in first-episode and early-onset major depression disorder[J]. J Magn Reson Imaging, 2023, 58(5): 1431-1440. DOI: 10.1002/jmri.28651.
[36]
WADA T, TOGAO O, TOKUNAGA C, et al. Grading of gliomas using 3D CEST imaging with compressed sensing and sensitivity encoding[J/OL]. Eur J Radiol, 2023, 158: 110654 [2023-06-04]. https://pubmed.ncbi.nlm.nih.gov/36528957/. DOI: 10.1016/j.ejrad.2022.110654.
[37]
LIU R B, ZHANG H X, NIU W M, et al. Erratum to: improved chemical exchange saturation transfer imaging with real-time frequency drift correction (Magn Reson Med. 2019; 81: 2915-2923)[J/OL]. Magn Reson Med, 2020, 83(5): 1884 [2023-06-04]. https://pubmed.ncbi.nlm.nih.gov/31976598/. DOI: 10.1002/mrm.28133.
[38]
RAMMOHAN N, RANDALL J W, YADAV P. History of technological advancements towards MR-linac: the future of image-guided radiotherapy[J/OL]. J Clin Med, 2022, 11(16): 4730 [2023-06-04]. https://pubmed.ncbi.nlm.nih.gov/36012969/. DOI: 10.3390/jcm11164730.
[39]
CHAN R W, LAWRENCE L S P, OGLESBY R T, et al. Chemical exchange saturation transfer MRI in central nervous system tumours on a 1.5 T MR-Linac[J/OL]. Radiother Oncol, 2021, 162: 140-149 [2023-06-04]. https://pubmed.ncbi.nlm.nih.gov/34280403/. DOI: 10.1016/j.radonc.2021.07.010.
[40]
CHAN R W, CHEN H B, MYREHAUG S, et al. Quantitative CEST and MT at 1.5T for monitoring treatment response in glioblastoma: early and late tumor progression during chemoradiation[J]. J Neurooncol, 2021, 151(2): 267-278. DOI: 10.1007/s11060-020-03661-y.

PREV Quantitative evaluation of sacroiliac arthritis activity in ankylosing spondylitis based on magnetic resonance image compilation sequences
NEXT Impact of AI-assisted compressed sensing on quality and phase value of nuclei of brain susceptibility weighted imaging
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn