Share:
Share this content in WeChat
X
Experience Exchang
Study of ReHo and fALFF in patients with obstructive sleep apnea hypopnea syndrome
WANG Qin  XIONG Yanxi  ZHANG Zili  AO Feng  LI Sheng  LI Yanhong  CHEN Guangbin 

Cite this article as: WANG Q, XIONG Y X, ZHANG Z L, et al. Study of ReHo and fALFF in patients with obstructive sleep apnea hypopnea syndrome[J]. Chin J Magn Reson Imaging, 2023, 14(12): 98-102. DOI:10.12015/issn.1674-8034.2023.12.016.


[Abstract] Objective To investigate the brain regions with abnormal neural activity in the patients with obstructive sleep apnea hypopnea syndrome (OSAHS), using regional homogeneity (ReHo) and fractional amplitude of low-frequency fluctuation (fALFF) of the rest-state functional magnetic resonance imaging (rs-fMRI) technique.Materials and Methods A total of 30 male patients with OSAHS who were initially diagnosed and untreated by polysomnography (PSG) in the Department of Respiratory of Shiyan Renmin Hospital were collected, and 30 volunteers with normal sleep, similar age and education level monitored by PSG during the same period were selected as the normal control (NC) group. Rs-fMRI examination was performed to obtain blood oxygen level dependent (BOLD) signals. ReHo, fALFF are used to compare the OSAHS group with the NC group to find out the brain regions with significant differences.Results Compared with the NC group, the OSAHS group has significant differences between ReHo and fALFF (P<0.001). The brain regions with increased ReHo value included left pons (t=3.94, P<0.001), left anterior cerebellar lobe (t=4.68, P<0.001) and right anterior cerebellar lobe (t=4.94, P<0.001). The brain region with decreased ReHo value is none. The brain regions with increased fALFF value are left posterior lobe of the cerebellum (t=6.20, P<0.001), left superior temporal gyrus (t=5.49, P<0.001), and left fusiform gyrus (t=4.35, P<0.001). The brain region with decreased fALFF value is left paracentral lobule (t=-4.12, P<0.001).Conclusions In patients with OSAHS, the ReHo value and the fALFF value in multiple brain regions were changed. The ReHo value of some brain regions in OSAHS patients increased, and the brain regions that fALFF value changed were mostly concentrated in the left cerebral hemisphere.
[Keywords] obstructive sleep apnea;brain network;functional magnetic resonance imaging;magnetic resonance imaging;regional homogeneity;fractional amplitude of low-frequency fluctuation

WANG Qin1, 2   XIONG Yanxi1, 2*   ZHANG Zili1, 2   AO Feng1, 2   LI Sheng1, 2   LI Yanhong3   CHEN Guangbin1, 2  

1 Department of Radiography Center, Shiyan Renmin Hospital (Affiliated People's Hospital of Hubei University of Medicine), Shiyan 442099, China

2 Institute of Radiology, Shiyan Renmin Hospital (Affiliated People's Hospital of Hubei University of Medicine), Shiyan 442099, China

3 Department of Respiratory Medicine, Shiyan Renmin Hospital (Affiliated People's Hospital of Hubei University of Medicine), Shiyan 442099, China

Corresponding author: XIONG Y X, E-mail: hixiongyanxi@163.com

Conflicts of interest   None.

Received  2021-07-29
Accepted  2023-12-02
DOI: 10.12015/issn.1674-8034.2023.12.016
Cite this article as: WANG Q, XIONG Y X, ZHANG Z L, et al. Study of ReHo and fALFF in patients with obstructive sleep apnea hypopnea syndrome[J]. Chin J Magn Reson Imaging, 2023, 14(12): 98-102. DOI:10.12015/issn.1674-8034.2023.12.016.

[1]
MALHOTRA A, AYAPPA I, AYAS N, et al. Metrics of sleep apnea severity: beyond the apnea-hypopnea index[J/OL]. Sleep, 2021, 44(7): zsab030 [2021-07-29]. https://doi.org/10.1093/sleep/zsab030. DOI: 10.1093/sleep/zsab030.
[2]
IANNELLA G, MAGLIULO G, GRECO A, et al. Obstructive sleep apnea syndrome: From symptoms to treatment[J/OL]. Int J Environ Res Public Health, 2022, 19(4): 2459 [2021-07-29]. https://doi.org/10.3390/ijerph19042459. DOI: 10.3390/ijerph19042459.
[3]
VANEK J, PRASKO J, GENZOR S, et al. Obstructive sleep apnea, depression and cognitive impairment[J]. Sleep Med, 2020, 72: 50-58. DOI: 10.1016/j.sleep.2020.03.017.
[4]
LEE J J, SUNDAR K M. Evaluation and management of adults with obstructive sleep apnea syndrome[J]. Lung, 2021, 199(2): 87-101. DOI: 10.1007/s00408-021-00426-w.
[5]
YANG J, GOHEL S, VACHHA B. Current methods and new directions in resting state fMRI[J]. Clin Imaging, 2020, 65: 47-53. DOI: 10.1016/j.clinimag.2020.04.004.
[6]
LI K, SHU Y, LIU X, et al. Dynamic regional homogeneity alterations and cognitive impairment in patients with moderate and severe obstructive sleep apnea[J/OL]. Front Neurosci, 2022, 16: 940721 [2021-07-29]. https://doi.org/10.3389/fnins.2022.940721. DOI: 10.3389/fnins.2022.940721.
[7]
BONSIGNORE M R, SAARESRANTA T, RIHA R L. Sex differences in obstructive sleep apnea[J/OL]. Eur Respir Rev, 2019, 28(154): 190030 [2021-07-29]. https://doi.org/10.1183/16000617.0030-2019. DOI: 10.1183/16000617.0030-2019.
[8]
Committee on Sleep Disordered Breathing, Respiratory Physician Branch, Chinese Medical Doctor Association, "Huatuo Project" Sleep Health Project Expert Committee. Expert Consensus Documents on telemedicine clinical practice for adult obstructive sleep apnea hypopnea syndrome[J]. Natl Metl J China, 2021, 101(22): 1657-1664. DOI: 10.3760/cma.j.cn112137-20210202-00318.
[9]
WANG Q, XIONG Y X, CHEN G B, et al. Application of resting state fMRI in the study of the obstructive sleep apnea-hypopnea syndrome[J]. Chin J Magn Reson Imaging, 2020, 11(11): 1051-1055. DOI: 10.12015/issn.1674-8034.2020.11.022.
[10]
CHEN W, WANG H, SUN T, et al. Dynamic changes in fractional amplitude of low-frequency fluctuations in patients with chronic insomnia[J/OL]. Front Neurosci, 2022, 16: 1050240 [2021-07-29]. https://doi.org/10.3389/fnins.2022.1050240. DOI: 10.3389/fnins.2022.1050240.
[11]
GAO Y, WANG X, XIONG Z, et al. Abnormal fractional amplitude of low-frequency fluctuation as a potential imaging biomarker for first-episode major depressive disorder: A resting-state fMRI study and support vector machine analysis[J/OL]. Front Neurol, 2021, 12: 751400 [2021-07-29]. https://doi.org/10.3389/fneur.2021.751400. DOI: 10.3389/fneur.2021.751400.
[12]
QIU Y, YANG M, LI S, et al. Altered fractional amplitude of low-frequency fluctuation in major depressive disorder and bipolar disorder[J/OL]. Front Psychiatry, 2021, 12: 739210 [2021-07-29]. https://doi.org/10.3389/fpsyt.2021.739210. DOI: 10.3389/fpsyt.2021.739210.
[13]
FANG X, ZHANG R, BAO C, et al. Abnormal regional homogeneity (ReHo) and fractional amplitude of low frequency fluctuations (fALFF) in first-episode drug-naïve schizophrenia patients comorbid with depression[J]. Brain Imaging Behav, 2021, 15(5): 2627-2636. DOI: 10.1007/s11682-021-00465-0.
[14]
ZHANG P, GAO Y, HU Y, et al. Altered fractional amplitude of low-frequency fluctuation in anxious Parkinson's disease[J/OL]. Brain Sci, 2023, 13(1): 87 [2021-07-29]. https://doi.org/10.3390/brainsci13010087. DOI: 10.3390/brainsci13010087.
[15]
LI H, LI L, KONG L, et al. Frequency-specific regional homogeneity alterations and cognitive function in obstructive sleep apnea before and after short-term continuous positive airway pressure treatment[J]. Nat Sci Sleep, 2021, 13: 2221-2238. DOI: 10.2147/NSS.S344842.
[16]
SUN Y, LEI F, LUO L, et al. Effects of a single night of continuous positive airway pressure on spontaneous brain activity in severe obstructive sleep apnea[J/OL]. Sci Rep, 2023, 13(1): 8950 [2021-07-29]. https://doi.org/10.1038/s41598-023-36206-0. DOI: 10.1038/s41598-023-36206-0.
[17]
LU M, FANG F, WANG Z, et al. Association between serum/plasma levels of adiponectin and obstructive sleep apnea hypopnea syndrome: a meta-analysis[J/OL]. Lipids Health Dis, 2019, 18(1): 30 [2021-07-29]. https://doi.org/10.1186/s12944-019-0973-z. DOI: 10.1186/s12944-019-0973-z.
[18]
FAN X, ZHONG Y, LI J Q, et al. The interaction of severe obstructive sleep apnea hypopnea syndrome and abdominal obesity on cognitive function[J/OL]. J Integr Neurosci, 2022, 21(3): 85 [2021-07-29]. https://doi.org/10.31083/j.jin2103085. DOI: 10.31083/j.jin2103085
[19]
SCHIAVO L, PIERRO R, ASTERIA C, et al. Low-calorie ketogenic diet with continuous positive airway pressure to alleviate severe obstructive sleep apnea syndrome in patients with obesity scheduled for bariatric/metabolic surgery: a pilot, prospective, randomized multicenter comparative study[J]. Obes Surg, 2022, 32(3): 634-642. DOI: 10.1007/s11695-021-05811-1.
[20]
DUAN W, LIU X, PING L, et al. Distinct functional brain abnormalities in insomnia disorder and obstructive sleep apnea[J]. Eur Arch Psychiatry Clin Neurosci, 2023, 273(2): 493-509. DOI: 10.1007/s00406-022-01485-7.
[21]
TAHMASIAN M, ROSENZWEIG I, EICKHOFF S B, et al. Structural and functional neural adaptations in obstructive sleep apnea: An activation likelihood estimation meta-analysis[J]. Neurosci Biobehav Rev, 2016, 65: 142-156. DOI: 10.1016/j.neubiorev.2016.03.026.
[22]
CHEN T, YANG M, LIU B, et al. Regional homogeneity changes in patients with obstructive sleep apnea-hypopnea syndrome: resting-state functional MRI study[J]. Zhonghua Yi Xue Za Zhi, 2016, 96(11): 868-873. DOI: 10.3760/cma.j.issn.0376-2491.2016.11.009.
[23]
SHU Y, LIU X, YU P, et al. Inherent regional brain activity changes in male obstructive sleep apnea with mild cognitive impairment: A resting-state magnetic resonance study[J/OL]. Front Aging Neurosci, 2022, 14: 1022628 [2021-07-29]. https://doi.org/10.3389/fnagi.2022.1022628. DOI: 10.3389/fnagi.2022.1022628.
[24]
SONG X, ROY B, VACAS S, et al. Brain regional homogeneity changes after short-term positive airway pressure treatment in patients with obstructive sleep apnea[J]. Sleep Med, 2022, 91: 12-20. DOI: 10.1016/j.sleep.2022.02.005.
[25]
JI T, LI X, CHEN J, et al. Brain function in children with obstructive sleep apnea: a resting-state fMRI study[J/OL]. Sleep, 2021, 44(8): zsab047 [2021-07-29]. https://doi.org/10.1093/sleep/zsab047. DOI: 10.1093/sleep/zsab047.
[26]
SANTARNECCHI E, SICILIA I, RICHIARDI J, et al. Altered cortical and subcortical local coherence in obstructive sleep apnea: a functional magnetic resonance imaging study[J]. J Sleep Res, 2013, 22(3): 337-347. DOI: 10.1111/jsr.12006.
[27]
KOKA V, DE VITO A, ROISMAN G, et al. Orofacial myofunctional therapy in obstructive sleep apnea syndrome: A pathophysiological perspective[J/OL]. Medicina (Kaunas), 2021, 57(4): 323 [2021-07-29]. https://doi.org/10.3390/medicina57040323. DOI: 10.3390/medicina57040323.
[28]
SANTARNECCHI E, SPRUGNOLI G, SICILIA I, et al. Thalamic altered spontaneous activity and connectivity in obstructive sleep apnea syndrome[J]. J Neuroimaging, 2022, 32(2): 314-327. DOI: 10.1111/jon.12952.
[29]
HUANG W, LI H, LI H, et al. White matter lesions are associated with obstructive sleep apnea hypopnea syndrome[J]. Neurol Res, 2022, 44(5): 423-428. DOI: 10.1080/01616412.2021.2000823.
[30]
BAI J, WEN H, TAI J, et al. Altered spontaneous brain activity related to neurologic and sleep dysfunction in children with obstructive sleep apnea syndrome[J/OL]. Front Neurosci, 2021, 15: 595412 [2021-07-29]. https://doi.org/10.3389/fnins.2021.595412. DOI: 10.3389/fnins.2021.595412.

PREV Impact of AI-assisted compressed sensing on quality and phase value of nuclei of brain susceptibility weighted imaging
NEXT Application of 1H-MRS and DTI in the differential diagnosis of high-grade gliomas and metastatic tumors
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn