Share:
Share this content in WeChat
X
Review
Research progress of resting-state functional magnetic resonance imaging in the auxiliary diagnosis and early prognosis of bipolar disorder
GAO Yujun  SUN Jie  GUO Xin  LU Lin  WANG Gaohua 

Cite this article as: GAO Y J, SUN J, GUO X, et al. Research progress of resting-state functional magnetic resonance imaging in the auxiliary diagnosis and early prognosis of bipolar disorder[J]. Chin J Magn Reson Imaging, 2023, 14(12): 111-115. DOI:10.12015/issn.1674-8034.2023.12.019.


[Abstract] Bipolar disorder is a complex mental illness characterized by intricate clinical symptoms and treatment processes. With the rapid advancement of imaging techniques, bipolar disorder manifests distinct characteristics through various resting-state functional magnetic resonance imaging (rs-fMRI) analysis methods. Utilizing rs-fMRI research can offer deeper insights into the underlying pathogenesis of bipolar disorder and establish objective imaging biomarkers for clinical diagnosis, treatment response assessment, and prognosis prediction. This approach holds the potential to guide the development of novel mood stabilizing medications. This review article focused on recent rs-fMRI research in bipolar disorders, aiming to elucidate the current advancements in neural imaging related to bipolar disorder. Furthermore, it explored potential biomarkers and avenues for early treatment response prediction. The ultimate goal is to furnish clinicians with supplementary tools for diagnosing bipolar disorder and employing imaging indicators to forecast treatment efficacy.
[Keywords] bipolar disorder;magnetic resonance imaging;resting-state functional magnetic resonance imaging;pathogenesis;diagnosis;treatment efficacy

GAO Yujun1   SUN Jie2   GUO Xin1   LU Lin1, 3, 4   WANG Gaohua1*  

1 Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China

2 Pain Medical Center, the Third Hospital of Peking University, Beijing 100191, China

3 Key Laboratory of Mental Health of the National Health Commission, National Clinical Medical Research Center for Mental Diseases, Mental Health Center of Peking University Sixth Hospital, Beijing 100191, China

4 Peking University Tsinghua Life Sciences Joint Center, Peking University Institute of Frontier Interdisciplinary Studies, Beijing 100871, China

Corresponding author: WANG G H, E-mail: wanggaohua64@126.com

Conflicts of interest   None.

ACKNOWLEDGMENTS National Natural Science Foundation of China (No. 82071523).
Received  2023-05-04
Accepted  2023-11-24
DOI: 10.12015/issn.1674-8034.2023.12.019
Cite this article as: GAO Y J, SUN J, GUO X, et al. Research progress of resting-state functional magnetic resonance imaging in the auxiliary diagnosis and early prognosis of bipolar disorder[J]. Chin J Magn Reson Imaging, 2023, 14(12): 111-115. DOI:10.12015/issn.1674-8034.2023.12.019.

[1]
MCINTYRE R, BERK M, BRIETZKE E, et al. Bipolar disorders[J/OL]. Lancet, 2020, 396: 1841-1856 [2023-05-03]. https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(20)31544-0/fulltext. DOI: 10.1016/S0140-6736(20)31544-0.
[2]
WANG Q, GAO Y J, ZHANG Y D, et al. Decreased degree centrality values as a potential neuroimaging biomarker for migraine: a resting-state functional magnetic resonance imaging study and support vector machine analysis[J/OL]. Front Neurol, 2022, 13: 1105592 [2023-05-03]. https://pubmed.ncbi.nlm.nih.gov/36793799/. DOI: 10.3389/fneur.2022.1105592.
[3]
YAN H H, SHAN X X, LI H B, et al. Abnormal spontaneous neural activity as a potential predictor of early treatment response in patients with obsessive-compulsive disorder[J/OL]. J Affect Disord, 2022, 309: 27-36 [2023-05-03]. https://pubmed.ncbi.nlm.nih.gov/35472471/. DOI: 10.1016/j.jad.2022.04.125.
[4]
WEI S B, CHEN X Q, XIAO Y S, et al. Abnormal network homogeneity in the right superior medial frontal gyrus in cervical dystonia[J/OL]. Front Neurol, 2021, 12: 729068 [2023-05-03]. https://pubmed.ncbi.nlm.nih.gov/34803879/. DOI: 10.3389/fneur.2021.729068.
[5]
MCPHILEMY G, NABULSI L, KILMARTIN L, et al. Resting-state network patterns underlying cognitive function in bipolar disorder: a graph theoretical analysis[J]. Brain Connect, 2020, 10(7): 355-367. DOI: 10.1089/brain.2019.0709.
[6]
NABULSI L, MCPHILEMY G, KILMARTIN L, et al. Frontolimbic, frontoparietal, and default mode involvement in functional dysconnectivity in psychotic bipolar disorder[J]. Biol Psychiatry Cogn Neurosci Neuroimaging, 2020, 5(2): 140-151. DOI: 10.1016/j.bpsc.2019.10.015.
[7]
SYAN S K, SMITH M, FREY B N, et al. Resting-state functional connectivity in individuals with bipolar disorder during clinical remission: a systematic review[J]. J Psychiatry Neurosci, 2018, 43(5): 298-316. DOI: 10.1503/jpn.170175.
[8]
VARGAS C, LÓPEZ-JARAMILLO C, VIETA E. A systematic literature review of resting state network: functional MRI in bipolar disorder[J]. J Affect Disord, 2013, 150(3): 727-735. DOI: 10.1016/j.jad.2013.05.083.
[9]
WANG Y, ZHONG S M, JIA Y B, et al. Disrupted resting-state functional connectivity in nonmedicated bipolar disorder[J]. Radiology, 2016, 280(2): 529-536. DOI: 10.1148/radiol.2016151641.
[10]
GAO Y J, TONG X, HU J X, et al. Decreased resting-state neural signal in the left angular gyrus as a potential neuroimaging biomarker of schizophrenia: an amplitude of low-frequency fluctuation and support vector machine analysis[J/OL]. Front Psychiatry, 2022, 13: 949512 [2023-05-03]. https://pubmed.ncbi.nlm.nih.gov/36090354/. DOI: 10.3389/fpsyt.2022.949512.
[11]
LI A, ZALESKY A, YUE W H, et al. A neuroimaging biomarker for striatal dysfunction in schizophrenia[J]. Nat Med, 2020, 26(4): 558-565. DOI: 10.1038/s41591-020-0793-8.
[12]
GAO Y J, ZHAO X F, HUANG J C, et al. Abnormal regional homogeneity in right caudate as a potential neuroimaging biomarker for mild cognitive impairment: a resting-state fMRI study and support vector machine analysis[J/OL]. Front Aging Neurosci, 2022, 14: 979183 [2023-05-03]. https://pubmed.ncbi.nlm.nih.gov/36118689/. DOI: 10.3389/fnagi.2022.979183.
[13]
FINGELKURTS A A, FINGELKURTS A A, KÄHKÖNEN S. Functional connectivity in the brain: is it an elusive concept?[J]. Neurosci Biobehav Rev, 2005, 28(8): 827-836. DOI: 10.1016/j.neubiorev.2004.10.009.
[14]
DING Y D, CHEN X, CHEN Z B, et al. Reduced nucleus accumbens functional connectivity in reward network and default mode network in patients with recurrent major depressive disorder[J/OL]. Transl Psychiatry, 2022, 12(1): 236 [2023-05-03]. https://pubmed.ncbi.nlm.nih.gov/35668086/. DOI: 10.1038/s41398-022-01995-x.
[15]
GAO Y J, GUO X, ZHONG Y, et al. Decreased dorsal attention network homogeneity as a potential neuroimaging biomarker for major depressive disorder[J/OL]. J Affect Disord, 2023, 332: 136-142 [2023-05-03]. https://pubmed.ncbi.nlm.nih.gov/36990286/. DOI: 10.1016/j.jad.2023.03.080.
[16]
GOES F S. Diagnosis and management of bipolar disorders[J/OL]. BMJ, 2023, 381: e073591 [2023-05-03]. https://pubmed.ncbi.nlm.nih.gov/37045450/. DOI: 10.1136/bmj-2022-073591.
[17]
VAI B, BERTOCCHI C, BENEDETTI F. Cortico-limbic connectivity as a possible biomarker for bipolar disorder: where are we now?[J]. Expert Rev Neurother, 2019, 19(2): 159-172. DOI: 10.1080/14737175.2019.1562338.
[18]
OTA M, NODA T, SATO N, et al. Structural brain network differences in bipolar disorder using with similarity-based approach[J]. Acta Neuropsychiatr, 2021, 33(3): 121-125. DOI: 10.1017/neu.2020.45.
[19]
ZOVETTI N, ROSSETTI M G, PERLINI C, et al. Default mode network activity in bipolar disorder[J/OL]. Epidemiol Psychiatr Sci, 2020, 29: e166 [2023-05-03]. https://pubmed.ncbi.nlm.nih.gov/32895076/. DOI: 10.1017/S2045796020000803.
[20]
LIM C S, BALDESSARINI R J, VIETA E, et al. Longitudinal neuroimaging and neuropsychological changes in bipolar disorder patients: review of the evidence[J]. Neurosci Biobehav Rev, 2013, 37(3): 418-435. DOI: 10.1016/j.neubiorev.2013.01.003.
[21]
ZHANG B, WANG F, DONG H M, et al. Surface-based regional homogeneity in bipolar disorder: a resting-state fMRI study[J/OL]. Psychiatry Res, 2019, 278: 199-204 [2023-05-03]. https://pubmed.ncbi.nlm.nih.gov/31220786/. DOI: 10.1016/j.psychres.2019.05.045.
[22]
FRANGOU S. Neuroimaging markers of risk, disease expression, and resilience to bipolar disorder[J/OL]. Curr Psychiatry Rep, 2019, 21(7): 52 [2023-05-03]. https://pubmed.ncbi.nlm.nih.gov/31161278/. DOI: 10.1007/s11920-019-1039-7.
[23]
YOON S, KIM T D, KIM J, et al. Altered functional activity in bipolar disorder: a comprehensive review from a large-scale network perspective[J/OL]. Brain Behav, 2021, 11(1): e01953 [2023-05-03]. https://pubmed.ncbi.nlm.nih.gov/33210461/. DOI: 10.1002/brb3.1953.
[24]
WANG J J, WANG Y, HUANG H Y, et al. Abnormal dynamic functional network connectivity in unmedicated bipolar and major depressive disorders based on the triple-network model[J]. Psychol Med, 2020, 50(3): 465-474. DOI: 10.1017/S003329171900028X.
[25]
MENEZES I C, VON WERNE BAES C, FÍGARO-DRUMOND F V, et al. Differential diagnosis of major depressive disorder and bipolar disorder: genetic and hormonal assessment and the influence of early-life stress[J/OL]. Brain Sci, 2022, 12(11): 1476 [2023-05-03]. https://pubmed.ncbi.nlm.nih.gov/36358401/. DOI: 10.3390/brainsci12111476.
[26]
LIBERG B, EKMAN C J, SELLGREN C, et al. Subcortical morphometry and psychomotor function in euthymic bipolar disorder with a history of psychosis[J]. Brain Imaging Behav, 2015, 9(2): 333-341. DOI: 10.1007/s11682-014-9313-0.
[27]
YOSHIMURA Y, OKAMOTO Y, ONODA K, et al. Psychosocial functioning is correlated with activation in the anterior cingulate cortex and left lateral prefrontal cortex during a verbal fluency task in euthymic bipolar disorder: a preliminary fMRI study[J]. Psychiatry Clin Neurosci, 2014, 68(3): 188-196. DOI: 10.1111/pcn.12115.
[28]
MASSALHA Y, MAGGIONI E, CALLARI A, et al. A review of resting-state fMRI correlations with executive functions and social cognition in bipolar disorder[J/OL]. J Affect Disord, 2023, 334: 337-351 [2023-05-03]. https://pubmed.ncbi.nlm.nih.gov/37003435/. DOI: 10.1016/j.jad.2023.03.084.
[29]
MACOVEANU J, PETERSEN J Z, FISHER P M, et al. Associations between aberrant working memory-related neural activity and cognitive impairments in somatically healthy, remitted patients with mood disorders[J/OL]. Psychol Med, 2023: 1-11 [2023-05-03]. https://pubmed.ncbi.nlm.nih.gov/37051904/. DOI: 10.1017/S0033291723000715.
[30]
MARINO M, ROMEO Z, ANGRILLI A, et al. Default mode network shows alterations for low-frequency fMRI fluctuations in euthymic bipolar disorder[J/OL]. J Psychiatr Res, 2021, 144: 59-65 [2023-05-03]. https://pubmed.ncbi.nlm.nih.gov/34600288/. DOI: 10.1016/j.jpsychires.2021.09.051.
[31]
TSENG H H, CHANG H H, WEI S Y, et al. Peripheral inflammation is associated with dysfunctional corticostriatal circuitry and executive dysfunction in bipolar disorder patients[J/OL]. Brain Behav Immun, 2021, 91: 695-702 [2023-05-03]. https://pubmed.ncbi.nlm.nih.gov/32950621/. DOI: 10.1016/j.bbi.2020.09.010.
[32]
ARONICA R, ENRICO P, SQUARCINA L, et al. Association between Diffusion Tensor Imaging, inflammation and immunological alterations in unipolar and bipolar depression: a review[J/OL]. Neurosci Biobehav Rev, 2022, 143: 104922 [2023-05-03]. https://pubmed.ncbi.nlm.nih.gov/36272579/. DOI: 10.1016/j.neubiorev.2022.104922.
[33]
YU H, NI P Y, TIAN Y, et al. Association of the plasma complement system with brain volume deficits in bipolar and major depressive disorders[J]. Psychol Med, 2023, 53(13): 6102-6112. DOI: 10.1017/S0033291722003282.
[34]
ZHONG Y, CHEN Y J, ZHOU Y, et al. The Artificial intelligence large language models and neuropsychiatry practice and research ethic[J/OL]. Asian J Psychiatr, 2023, 84: 103577 [2023-05-03]. https://pubmed.ncbi.nlm.nih.gov/37019020/. DOI: 10.1016/j.ajp.2023.103577.
[35]
LIN H, XIANG X, HUANG J L, et al. Abnormal degree centrality values as a potential imaging biomarker for major depressive disorder: a resting-state functional magnetic resonance imaging study and support vector machine analysis[J/OL]. Front Psychiatry, 2022, 13: 960294 [2023-05-03]. https://pubmed.ncbi.nlm.nih.gov/36147977/. DOI: 10.3389/fpsyt.2022.960294.
[36]
YAN M Q, HE Y Q, CUI X L, et al. Disrupted regional homogeneity in melancholic and non-melancholic major depressive disorder at rest[J/OL]. Front Psychiatry, 2021, 12: 618805 [2023-05-03]. https://pubmed.ncbi.nlm.nih.gov/33679477/. DOI: 10.3389/fpsyt.2021.618805.
[37]
AMBROSI E, ARCINIEGAS D B, MADAN A, et al. Insula and amygdala resting-state functional connectivity differentiate bipolar from unipolar depression[J]. Acta Psychiatr Scand, 2017, 136(1): 129-139. DOI: 10.1111/acps.12724.
[38]
YU H, LI M L, LI Y F, et al. Anterior cingulate cortex, insula and amygdala seed-based whole brain resting-state functional connectivity differentiates bipolar from unipolar depression[J/OL]. J Affect Disord, 2020, 274: 38-47 [2023-05-03]. https://pubmed.ncbi.nlm.nih.gov/32469830/. DOI: 10.1016/j.jad.2020.05.005.
[39]
LI M, DAS T, DENG W, et al. Clinical utility of a short resting-state MRI scan in differentiating bipolar from unipolar depression[J]. Acta Psychiatr Scand, 2017, 136(3): 288-299. DOI: 10.1111/acps.12752.
[40]
WANG Y, SUN K, LIU Z Y, et al. Classification of unmedicated bipolar disorder using whole-brain functional activity and connectivity: a radiomics analysis[J]. Cereb Cortex, 2020, 30(3): 1117-1128. DOI: 10.1093/cercor/bhz152.
[41]
GAO Y J, GUO X, WANG S W, et al. Frontoparietal network homogeneity as a biomarker for mania and remitted bipolar disorder and a predictor of early treatment response in bipolar mania patient[J/OL]. J Affect Disord, 2023, 339: 486-494 [2023-05-03]. https://pubmed.ncbi.nlm.nih.gov/37437732/. DOI: 10.1016/j.jad.2023.07.033.
[42]
CHANG M, WOMER F Y, GONG X H, et al. Identifying and validating subtypes within major psychiatric disorders based on frontal-posterior functional imbalance via deep learning[J]. Mol Psychiatry, 2021, 26(7): 2991-3002. DOI: 10.1038/s41380-020-00892-3.
[43]
OLIVEIRA-SARAIVA D, FERREIRA H A. Normative model detects abnormal functional connectivity in psychiatric disorders[J/OL]. Front Psychiatry, 2023, 14: 1068397 [2023-05-03]. https://pubmed.ncbi.nlm.nih.gov/36873218/. DOI: 10.3389/fpsyt.2023.1068397.
[44]
CATTARINUSSI G, BELLANI M, MAGGIONI E, et al. Resting-state functional connectivity and spontaneous brain activity in early-onset bipolar disorder: a review of functional Magnetic Resonance Imaging studies[J/OL]. J Affect Disord, 2022, 311: 463-471 [2023-05-03]. https://pubmed.ncbi.nlm.nih.gov/35580695/. DOI: 10.1016/j.jad.2022.05.055.
[45]
DÍAZ ORTIZ A C, UPEGUÍ C V, OSPINA J P Z, et al. Correlation between cognitive performance and structural neuroanatomy in patients with type I bipolar affective disorder treated with and without lithium[J/OL]. Rev Colomb Psiquiatr, 2021: S0034-S7450(20)30094-9[2023-05-03]. https://pubmed.ncbi.nlm.nih.gov/33735049/. DOI: 10.1016/j.rcp.2020.10.003.
[46]
HAJEK T, BAUER M, SIMHANDL C, et al. Neuroprotective effect of lithium on hippocampal volumes in bipolar disorder independent of long-term treatment response[J]. Psychol Med, 2014, 44(3): 507-517. DOI: 10.1017/S0033291713001165.
[47]
RODRÍGUEZ-RAMÍREZ A M, CEDILLO-RÍOS V, BECERRA-PALARS C, et al. Prefrontal cortical thickness and clinical characteristics of long-term treatment response to valproate in bipolar disorder[J/OL]. Psychiatry Res Neuroimaging, 2021, 317: 111382 [2023-05-03]. https://pubmed.ncbi.nlm.nih.gov/34482053/. DOI: 10.1016/j.pscychresns.2021.111382.
[48]
BERGAMELLI E, DEL FABRO L, DELVECCHIO G, et al. The impact of lithium on brain function in bipolar disorder: an updated review of functional magnetic resonance imaging studies[J]. CNS Drugs, 2021, 35(12): 1275-1287. DOI: 10.1007/s40263-021-00869-y.
[49]
LEI D, LI W B, TALLMAN M J, et al. Changes in the brain structural connectome after a prospective randomized clinical trial of lithium and quetiapine treatment in youth with bipolar disorder[J]. Neuropsychopharmacology, 2021, 46(7): 1315-1323. DOI: 10.1038/s41386-021-00989-5.
[50]
MARTINS S, ROMANO C, RIBEIRO B. Looking though the past, present and future of TMS-EEG[J]. Eur Psychiatry, 2023, 66: S925-S925. DOI: 10.1192/j.eurpsy.2023.1956.
[51]
GOLD A K, ORNELAS A C, CIRILLO P, et al. Clinical applications of transcranial magnetic stimulation in bipolar disorder[J/OL]. Brain Behav, 2019, 9(10): e01419 [2023-05-03]. https://pubmed.ncbi.nlm.nih.gov/31566935/. DOI: 10.1002/brb3.1419.
[52]
CLAEYS E H I, MANTINGH T, MORRENS M, et al. Resting-state fMRI in depressive and (hypo)manic mood states in bipolar disorders: a systematic review[J/OL]. Prog Neuropsychopharmacol Biol Psychiatry, 2022, 113: 110465 [2023-05-03]. https://pubmed.ncbi.nlm.nih.gov/34736998/. DOI: 10.1016/j.pnpbp.2021.110465.
[53]
TAN V, JEYACHANDRA J, GE R Y, et al. Subgenual cingulate connectivity as a treatment predictor during low-frequency right dorsolateral prefrontal rTMS: a concurrent TMS-fMRI study[J]. Brain Stimul, 2023, 16(4): 1165-1172. DOI: 10.1016/j.brs.2023.07.051.
[54]
MUTZ J. Brain stimulation treatment for bipolar disorder[J]. Bipolar Disord, 2023, 25(1): 9-24. DOI: 10.1111/bdi.13283.
[55]
SHAMABADI A, KARIMI H, CATTARINUSSI G, et al. Neuroimaging correlates of treatment response to transcranial magnetic stimulation in bipolar depression: a systematic review[J/OL]. Brain Sci, 2023, 13(5): 801 [2023-05-03]. https://pubmed.ncbi.nlm.nih.gov/37239273/. DOI: 10.3390/brainsci13050801.
[56]
NABULSI L, MCPHILEMY G, KILMARTIN L, et al. Frontolimbic, frontoparietal, and default mode involvement in functional dysconnectivity in psychotic bipolar disorder[J]. Biol Psychiatry Cogn Neurosci Neuroimaging, 2020, 5(2): 140-151. DOI: 10.1016/j.bpsc.2019.10.015.
[57]
WANG J J, WANG Y, HUANG H Y, et al. Abnormal intrinsic brain functional network dynamics in unmedicated depressed bipolar Ⅱ disorder[J/OL]. J Affect Disord, 2019, 253: 402-409 [2023-05-03]. https://pubmed.ncbi.nlm.nih.gov/31103805/. DOI: 10.1016/j.jad.2019.04.103.
[58]
LI T, MAO Z, ZHAO L, et al. Childhood trauma and its influence on the clinical features of bipolar disorder[J/OL]. Child Abuse Negl, 2023, 141: 106203 [2023-05-03]. https://pubmed.ncbi.nlm.nih.gov/37088009/. DOI: 10.1016/j.chiabu.2023.106203.

PREV Duodenal plexiform angiomyxoid myofibroblastic tumor: One case report
NEXT Advances in MRI brain networks in children with intellectual disabilities
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn