Share:
Share this content in WeChat
X
Review
Research progress of brain structure and resting-state functional MRI in patients with breast cancer chemotherapy-related cognitive impairment
CAO Shuainan  CHEN Fei  DAI Zhenyu 

Cite this article as: CAO S N, CHEN F, DAI Z Y. Research progress of brain structure and resting-state functional MRI in patients with breast cancer chemotherapy-related cognitive impairment[J]. Chin J Magn Reson Imaging, 2023, 14(12): 121-126. DOI:10.12015/issn.1674-8034.2023.12.021.


[Abstract] Chemotherapy-related cognitive impairment (CRCI) is common among breast cancer patients after chemotherapy. More and more evidence shows that CRCI is mainly due to changes in the brain structure and function. MRI technology can reveal the reduction of gray matter volume/density, the decrease of cortical thickness, the destruction of white matter microstructure, and the abnormalities in brain function or network connectivity. This article aims to review the research on the CRCI of breast cancer using gray matter, white matter structural imaging and resting-state functional MRI (rs-fMRI). It mainly includes three dimensional T1-weighted imaging and diffusion tensor imaging (DTI) on study gray matter and white matter abnormalities, as well as the changes in brain amplitude of low frequency fluctuation (ALFF), regional homogeneity (ReHo), functional connectivity (FC) and brain networks observed in rs-fMRI. To evaluate the association between neuroimaging markers and cognitive function in the trajectory of breast cancer chemotherapy, explore the neurobiological mechanism of CRCI, and provide relatively objective neuroimaging markers for CRCI.
[Keywords] breast cancer;chemotherapy-related cognitive impairment;magnetic resonance imaging;structural magnetic resonance imaging;functional magnetic resonance imaging

CAO Shuainan   CHEN Fei   DAI Zhenyu*  

Department of Imaging, the Sixth Affiliated Hospital of Nantong University (the Third People's Hospital of Yancheng), Yancheng 224008, China

Corresponding author: DAI Z Y, E-mail: ycsydzy@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS Scientific Research Project of Clinical College of Jiangsu Medical Vocational College (No. 20229104, 20229131).
Received  2023-07-28
Accepted  2023-11-07
DOI: 10.12015/issn.1674-8034.2023.12.021
Cite this article as: CAO S N, CHEN F, DAI Z Y. Research progress of brain structure and resting-state functional MRI in patients with breast cancer chemotherapy-related cognitive impairment[J]. Chin J Magn Reson Imaging, 2023, 14(12): 121-126. DOI:10.12015/issn.1674-8034.2023.12.021.

[1]
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
[2]
AYANA G, RYU J. Ultrasound-responsive nanocarriers for breast cancer chemotherapy[J/OL]. Micromachines (Basel), 2022, 13(9): 1508 [2023-07-28]. https://pubmed.ncbi.nlm.nih.gov/36144131/. DOI: 10.3390/mi13091508.
[3]
JUAN Z, CHEN J, DING B, et al. Probiotic supplement attenuates chemotherapy-related cognitive impairment in patients with breast cancer: a randomised, double-blind, and placebo-controlled trial[J]. Eur J Cancer, 2022, 161: 10-22. DOI: 10.1016/j.ejca.2021.11.006.
[4]
OLDACRES L, HEGARTY J. Interventions promoting cognitive function in patients experiencing cancer related cognitive impairment: A systematic review[J]. Psychooncology, 2023, 32(2): 214-228. DOI: 10.1002/pon.6073.
[5]
MAYO S J, LUSTBERG M, H M D, et al. Cancer-related cognitive impairment in patients with non-central nervous system malignancies: an overview for oncology providers from the MASCC neurological complications study group[J]. Support Care Cancer, 2021, 29(6): 2821-2840. DOI: 10.1007/s00520-020-05860-9.
[6]
ONZI G R, D'AGUSTINI N. Chemobrain in Breast Cancer: Mechanisms, Clinical Manifestations, and Potential Interventions[J]. Drug Saf, 2022, 45(6): 601-621. DOI: 10.1007/s40264-022-01182-3.
[7]
VEGA J N, ALBERT K M, MAYER I A, et al. Subjective cognition and mood in persistent chemotherapy-related cognitive impairment[J]. J Cancer Surviv, 2022, 16(3): 614-623. DOI: 10.1007/s11764-021-01055-1.
[8]
DIJKSHOORN A B C, VAN STRALEN H E, SLOOTS M, et al. Prevalence of cognitive impairment and change in patients with breast cancer: A systematic review of longitudinal studies[J]. Psychooncology, 2021, 30(5): 635-648. DOI: 10.1002/pon.5623.
[9]
CERULLA TORRENTE N, NAVARRO PASTOR J B. Systematic review of cognitive sequelae of non-central nervous system cancer and cancer therapy[J]. J Cancer Surviv, 2020, 14(4): 464-482. DOI: 10.1007/s11764-020-00870-2.
[10]
YAO S, ZHANG Q, YAO X, et al. Advances of neuroimaging in chemotherapy related cognitive impairment (CRCI) of patients with breast cancer[J]. Breast Cancer Res Treat. 2023, 201(1): 15-26. DOI: 10.1007/s10549-023-07005-y.
[11]
LI X, CHEN H, LV Y, et al. Diminished gray matter density mediates chemotherapy dosage-related cognitive impairment in breast cancer patients[J/OL]. Sci Rep, 2018, 8(1): 13801 [2023-07-28]. https://pubmed.ncbi.nlm.nih.gov/30218006/. DOI: 10.1038/s41598-018-32257-w.
[12]
PERRIER J, VIARD A, LEVY C, et al. Longitudinal investigation of cognitive deficits in breast cancer patients and their gray matter correlates: impact of education level[J]. Brain Imaging Behav, 2020, 14(1): 226-241. DOI: 10.1007/s11682-018-9991-0.
[13]
DE RUITER M B, DEARDORFF R L, BLOMMAERT J, et al. Brain gray matter reduction and premature brain aging after breast cancer chemotherapy: a longitudinal multicenter data pooling analysis[J/OL]. Brain Imaging Behav, 2023 [2023-07-28]. https://doi.org/10.1007/s11682-023-00781-7. DOI: 10.1007/s11682-023-00781-7.
[14]
ZHOU X, TAN Y, YU H, et al. Early alterations in cortical morphology after neoadjuvant chemotherapy in breast cancer patients: A longitudinal magnetic resonance imaging study[J]. Hum Brain Mapp, 2022, 43(15): 4513-4528. DOI: 10.1002/HBM.25969.
[15]
DANIEL E, DENG F, PATEL S K, et al. Cortical thinning in chemotherapy-treated older long-term breast cancer survivors[J]. Brain Imaging Behav, 2023, 17(1): 66-76. DOI: 10.1007/s11682-022-00743-5.
[16]
HENNEGHAN A, RAO V, HARRISON R A, et al. Cortical brain age from pre-treatment to post-chemotherapy in patients with breast cancer[J]. Neurotox Res, 2020, 37(4): 788-799. DOI: 10.1007/s12640-019-00158-z.
[17]
CHEN B T, JIN T, PATEL S K, et al. Gray matter density reduction associated with adjuvant chemotherapy in older women with breast cancer[J]. Breast Cancer Res Treat, 2018, 172(2): 363-370. DOI: 10.1007/s10549-018-4911-y.
[18]
DU J, ZHANG A, LI J, et al. Doxorubicin-Induced Cognitive Impairment: The Mechanistic Insights[J/OL]. Front Oncol, 2021, 11: 673340 [2023-07-28]. https://pubmed.ncbi.nlm.nih.gov/34055643/. DOI: 10.3389/fonc.2021.673340.
[19]
GIBSON E M, MONJE M. Emerging mechanistic underpinnings and therapeutic targets for chemotherapy-related cognitive impairment[J]. Curr Opin Oncol, 2019, 31(6): 531-539. DOI: 10.1097/CCO.0000000000000578.
[20]
TONG T, LU H, ZONG J, et al. Chemotherapy-related cognitive impairment in patients with breast cancer based on MRS and DTI analysis[J]. Breast Cancer, 2020, 27(5): 893-902. DOI: 10.1007/s12282-020-01094-z.
[21]
ZHANG H, LI P, LIU T, et al. Focal white matter microstructural alteration after anthracycline-based systemic treatment in long-term breast cancer survivors: a structural magnetic resonance imaging study[J]. Brain Imaging Behav, 2022, 16(2): 843-854. DOI: 10.1007/s11682-021-00551-3.
[22]
QIN X J. To analyze the correlation between multimodal MRI imaging changes and cognitive function in breast cancer patients with chemotherapy-related cognitive impairment[J]. The Journal of Medical Theory and Practice, 2022, 35(17): 2995-2997. DOI: 10.19381/j.issn.1001-7585.2022.17.049.
[23]
DE RUITER M B, RENEMAN L, KIEFFER J M, et al. Brain white matter microstructure as a risk factor for cognitive decline after chemotherapy for breast cancer[J]. J Clin Oncol, 2021, 39(35): 3908-3917. DOI: 10.1200/JCO.21.00627.
[24]
BLOMMAERT J, SCHROYEN G, VANDENBULCKE M, et al. Age-dependent brain volume and neuropsychological changes after chemotherapy in breast cancer patients[J]. Hum Brain Mapp, 2019, 40(17): 4994-5010. DOI: 10.1002/HBM.24753.
[25]
CHEN B T, JIN T, PATEL S K, et al. Intrinsic brain activity changes associated with adjuvant chemotherapy in older women with breast cancer: a pilot longitudinal study[J]. Breast Cancer Res Treat, 2019, 176(1): 181-189. DOI: 10.1007/s10549-019-05230-y.
[26]
FENG W, LIU T H, LI P, et al. Abnormal spontaneous brain activities in breast cancer patients after EC-T chemotherapy: A resting-state functional magnetic resonance imaging study[J]. Chin J Magn Reason Imag, 2022, 13(6): 56-60. DOI: 10.12015/issn.1674-8034.2022.06.011.
[27]
APPS M A, RUSHWORTH M F, CHANG S W. The anterior cingulate gyrus and social cognition: Tracking the motivation of others[J]. Neuron, 2016, 90(4): 692-707. DOI: 10.1016/j.neuron.2016.04.018.
[28]
LANGE M, JOLY F, VARDY J, et al. Cancer-related cognitive impairment: an update on state of the art, detection, and management strategies in cancer survivors[J]. Ann Oncol, 2019, 30(12): 1925-1940. DOI: 10.1093/annonc/mdz410.
[29]
SHEN C Y, TSAI Y H, CHEN V C, et al. Comparison of functional dorsal attention network alterations in breast cancer survivors before and after chemotherapy[J/OL]. Medicine (Baltimore), 2021, 100(33): e27018 [2023-07-28]. https://pubmed.ncbi.nlm.nih.gov/34414995/. DOI: 10.1097/MD.0000000000027018.
[30]
MO C, LIN H, FU F, et al. Chemotherapy-induced changes of cerebral activity in resting-state functional magnetic resonance imaging and cerebral white matter in diffusion tensor imaging[J]. Oncotarget, 2017, 8(46): 81273-81284. DOI: 10.18632/oncotarget.18111.
[31]
BAI X, ZHENG J, ZHANG B, et al. Cognitive dysfunction and neurophysiologic mechanism of breast cancer patients undergoing chemotherapy based on resting state functional magnetic resonance imaging[J]. World Neurosurg, 2021, 149: 406-412. DOI: 10.1016/j.wneu.2020.10.066.
[32]
BRUNO J, HOSSEINI S M, KESLER S. Altered resting state functional brain network topology in chemotherapy-treated breast cancer survivors[J]. Neurobiol Dis, 2012, 48(3): 329-338. DOI: 10.1016/j.nbd.2012.07.009.
[33]
LIU S, NI J, YAN F, et al. Functional changes of the prefrontal cortex, insula, caudate and associated cognitive impairment (chemobrain) in NSCLC patients receiving different chemotherapy regimen[J/OL]. Front Oncol, 2022, 12: 1027515 [2023-07-28]. https://pubmed.ncbi.nlm.nih.gov/36408140/. DOI: 10.3389/fonc.2022.1027515.
[34]
BUKKIEVA T, POSPELOVA M, EFIMTSEV A, et al. Functional network connectivity reveals the brain functional alterations in breast cancer survivors[J/OL]. J Clin Med, 2022, 11(3): 617 [2023-07-28]. https://pubmed.ncbi.nlm.nih.gov/35160070/. DOI: 10.3390/jcm11030617.
[35]
WANG L, YAN Y, WANG X, et al. Executive function alternations of breast cancer patients after chemotherapy: Evidence from resting-state functional MRI[J]. Acad Radiol, 2016, 23(10): 1264-1270. DOI: 10.1016/j.acra.2016.05.014.
[36]
PARK H Y, LEE H, SOHN J, et al. Increased resting-state cerebellar-cortical connectivity in breast cancer survivors with cognitive complaints after chemotherapy[J/OL]. Sci Rep, 2021, 11(1): 12105 [2023-07-28]. https://pubmed.ncbi.nlm.nih.gov/34103606/. DOI: 10.1038/s41598-021-91447-1.
[37]
XU P, CHEN A, LI Y, et al. Medial prefrontal cortex in neurological diseases[J]. Physiol Genomics, 2019, 51(9): 432-442. DOI: 10.1152/physiolgenomics.00006.2019.
[38]
ZHUANG Y, GUO L, HUANG W, et al. Altered resting-state hippocampal functional connectivity in breast cancer survivors with chemotherapy-induced amenorrhea[J/OL]. Brain Behav, 2023: e3039 [2023-07-28]. https://pubmed.ncbi.nlm.nih.gov/37157937/. DOI: 10.1002/brb3.3039.
[39]
FENG Y, TULUHONG D, SHI Z, et al. Postchemotherapy hippocampal functional connectivity patterns in patients with breast cancer: a longitudinal resting state functional MR imaging study[J]. Brain Imaging Behav, 2020, 14(5): 1456-1467. DOI: 10.1007/s11682-019-00067-x.
[40]
APPLE A C, SCHROEDER M P, RYALS A J, et al. Hippocampal functional connectivity is related to self-reported cognitive concerns in breast cancer patients undergoing adjuvant therapy[J]. Neuroimage Clin, 2018, 20: 110-118. DOI: 10.1016/j.nicl.2018.07.010.
[41]
BRADLEY-GARCIA M, WINOCUR G, SEKERES M J. Episodic memory and recollection network disruptions following chemotherapy treatment in breast cancer survivors: A review of neuroimaging findings[J/OL]. Cancers (Basel), 2022, 14(19): 4752 [2023-07-28]. https://pubmed.ncbi.nlm.nih.gov/36230678/. DOI: 10.3390/cancers14194752.
[42]
PEUKERT X, STEINDORF K, SCHAGEN S B, et al. Hippocampus-related cognitive and affective impairments in patients with breast cancer-A systematic review[J/OL]. Front Oncol, 2020, 10: 147 [2023-07-28]. https://pubmed.ncbi.nlm.nih.gov/32154164/. DOI: 10.3389/fonc.2020.00147.
[43]
TAO L, WANG L, CHEN X, et al. Modulation of interhemispheric functional coordination in breast cancer patients receiving chemotherapy[J/OL]. Front Psychol, 2020, 11: 1689 [2023-07-28]. https://pubmed.ncbi.nlm.nih.gov/32849022/. DOI: 10.3389/fpsyg.2020.01689.
[44]
KESLER S R, ADAMS M, PACKER M, et al. Disrupted brain network functional dynamics and hyper-correlation of structural and functional connectome topology in patients with breast cancer prior to treatment[J/OL]. Brain Behav, 2017, 7(3): e00643 [2023-07-28]. https://pubmed.ncbi.nlm.nih.gov/28293478/. DOI: 10.1002/brb3.643.
[45]
LUIJENDIJK M J, BEKELE B M, SCHAGEN S B, et al. Temporal dynamics of resting-state functional networks and cognitive functioning following systemic treatment for breast cancer[J]. Brain Imaging Behav, 2022, 16(5): 1927-1937. DOI: 10.1007/s11682-022-00651-8.
[46]
SEGALL J M, ALLEN E A, JUNG R E, et al. Correspondence between structure and function in the human brain at rest[J/OL]. Front Neuroinform, 2012, 6: 10 [2023-07-28]. https://pubmed.ncbi.nlm.nih.gov/22470337/. DOI: 10.3389/fninf.2012.00010.
[47]
SMALLWOOD J, BERNHARDT B C, LEECH R, et al. The default mode network in cognition: a topographical perspective[J]. Nat Rev Neurosci, 2021, 22(8): 503-513. DOI: 10.1038/s41583-021-00474-4.
[48]
PHILLIPS N S, RAO V, KMETZ L, et al. Changes in brain functional and effective connectivity after treatment for breast cancer and implications for intervention targets[J]. Brain Connect, 2022, 12(4): 385-397. DOI: 10.1089/brain.2021.0049.
[49]
MIAO H, CHEN X, YAN Y, et al. Functional connectivity change of brain default mode network in breast cancer patients after chemotherapy[J]. Neuroradiology, 2016, 58(9): 921-928. DOI: 10.1007/s00234-016-1708-8.
[50]
CHEN B T, CHEN Z, PATEL S K, et al. Effect of chemotherapy on default mode network connectivity in older women with breast cancer[J]. Brain Imaging Behav, 2022, 16(1): 43-53. DOI: 10.1007/s11682-021-00475-y.
[51]
FENG Y, WANG Y F, ZHENG L J, et al. Network-level functional connectivity alterations in chemotherapy treated breast cancer patients: a longitudinal resting state functional MRI study[J/OL]. Cancer Imaging, 2020, 20(1): 73 [2023-07-28]. https://pubmed.ncbi.nlm.nih.gov/33066822/. DOI: 10.1186/s40644-020-00355-6.
[52]
HENNEGHAN A M, KESLER S R. Subjective cancer-related cognitive impairments and salience network connectivity in breast cancer survivors[J]. J Cancer Surviv, 2022, 17(4): 967-973. DOI: 10.1007/s11764-022-01307-8.
[53]
SHEN C Y, CHEN V C, YEH D C, et al. Association of functional dorsal attention network alterations with breast cancer and chemotherapy[J/OL]. Sci Rep, 2019, 9(1): 104 [2023-07-28]. https://pubmed.ncbi.nlm.nih.gov/30643203/. DOI: 10.1038/s41598-018-36380-6.
[54]
YANG J, DENG Y, LIU D, et al. Brain network deficits in breast cancer patients after early neoadjuvant chemotherapy: A longitudinal MRI study[J]. J Neurosci Res, 2023, 101(7): 1138-1153. DOI: 10.1002/jnr.25178.

PREV Advances in MRI brain networks in children with intellectual disabilities
NEXT Advances in MRI study of structural and functional changes in the limbic system of Parkinson,s disease with depression
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn