Share:
Share this content in WeChat
X
Review
Progress of motor recovery-related neuroplasticity after stroke in MRI studies
WU Yonger  LI Jing  LI Li  HOU Siyuan 

Cite this article as: WU Y E, LI J, LI L, et al. Progress of motor recovery-related neuroplasticity after stroke in MRI studies[J]. Chin J Magn Reson Imaging, 2023, 14(12): 132-135, 155. DOI:10.12015/issn.1674-8034.2023.12.023.


[Abstract] The most prevalent and impactful poststroke consequence is motor impairment. Motor function recovery after stroke is significantly linked to neuronal plasticity and reorganization. MRI techniques have been utilized to study neuroplasticity in vivo. This article aims to review the significant recent achievements in MRI-related motor function recovery after stroke from the perspectives of gray matter morphology, white matter microstructure and functional activitiy, which help to clarify the neural mechanisms underlying the recovery and provide theoretical basis of motor function rehabilitation methods for stroke patients.
[Keywords] stroke;motor disorder;hemiplegia;neuronal plasticity;magnetic resonance imaging

WU Yonger1   LI Jing2*   LI Li3   HOU Siyuan1  

1 Department of Acupuncture and Rehabilitation, Affiliated Hospital of Nanjing University of Chinese Medicine (Jiangsu Province Hospital of Chinese Medicine), Nanjing 210029, China

2 Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine (Jiangsu Province Hospital of Chinese Medicine), Nanjing 210029, China

3 Department of Neurology, Affiliated Hospital of Nanjing University of Chinese Medicine (Jiangsu Province Hospital of Chinese Medicine), Nanjing 210029, China

Corresponding author: LI J, E-mail: liqian9989@sina.com

Conflicts of interest   None.

ACKNOWLEDGMENTS Medical Research Project of Jiangsu Provincial Health and Health Commission (No. Z2021002); Jiangsu Provincial Traditional Chinese Medicine Science and Technology Program (No. MS2021012).
Received  2023-06-14
Accepted  2023-11-06
DOI: 10.12015/issn.1674-8034.2023.12.023
Cite this article as: WU Y E, LI J, LI L, et al. Progress of motor recovery-related neuroplasticity after stroke in MRI studies[J]. Chin J Magn Reson Imaging, 2023, 14(12): 132-135, 155. DOI:10.12015/issn.1674-8034.2023.12.023.

[1]
HANDLEY A, MEDCALF P, HELLIER K, et al. Movement disorders after stroke[J]. Age Ageing, 2009, 38(3): 260-266. DOI: 10.1093/ageing/afp020.
[2]
OLAFSON E R, JAMISON K W, SWEENEY E M, et al. Functional connectome reorganization relates to post-stroke motor recovery and structural and functional disconnection[J/OL]. Neuroimage, 2021, 245: 118642 [2023-06-14]. https://www.ncbi.nlm.nih.gov/pubmed/34637901. DOI: 10.1016/j.neuroimage.2021.118642.
[3]
ADAM R, JOHNSTON K, MENON R S, et al. Functional reorganization during the recovery of contralesional target selection deficits after prefrontal cortex lesions in macaque monkeys[J/OL]. Neuroimage, 2020, 207: 116339 [2023-06-14]. https://pubmed.ncbi.nlm.nih.gov/31707193. DOI: 10.1016/j.neuroimage.2019.116339.
[4]
WIETERS F, ASWENDT M. Structural integrity and remodeling underlying functional recovery after stroke[J]. Neural Regen Res, 2021, 16(7): 1423-1424. DOI: 10.4103/1673-5374.301004.
[5]
HIGO N. Non-human primate models to explore the adaptive mechanisms after stroke[J/OL]. Front Syst Neurosci, 2021, 15: 760311 [2023-06-14]. https://www.ncbi.nlm.nih.gov/pubmed/34819842. DOI: 10.3389/fnsys.2021.760311.
[6]
ZHU D, LIU Y K, ZHAO Y D, et al. Dynamic changes of resting state functional network following acute ischemic stroke[J/OL]. J Chem Neuroanat, 2023, 130: 102272 [2023-06-14]. https://www.ncbi.nlm.nih.gov/pubmed/37044352. DOI: 10.1016/j.jchemneu.2023.102272.
[7]
GUGGISBERG A G, KOCH P J, HUMMEL F C, et al. Brain networks and their relevance for stroke rehabilitation[J]. Clin Neurophysiol, 2019, 130(7): 1098-1124. DOI: 10.1016/j.clinph.2019.04.004.
[8]
CHEN J, SUN D, SHI Y, et al. Altered static and dynamic voxel-mirrored homotopic connectivity in subacute stroke patients: a resting-state fMRI study[J]. Brain Imaging Behav, 2021, 15(1): 389-400. DOI: 10.1007/s11682-020-00266-x.
[9]
ZHANG J, MENG L L, QIN W, et al. Structural damage and functional reorganization in ipsilesional m1 in well-recovered patients with subcortical stroke[J]. Stroke, 2014, 45(3): 788-793. DOI: 10.1161/STROKEAHA.113.003425.
[10]
DIAO Q, LIU J, WANG C, et al. Gray matter volume changes in chronic subcortical stroke: A cross-sectional study[J]. Neuroimage Clin, 2017, 14: 679-684. DOI: 10.1016/j.nicl.2017.01.031.
[11]
JIANG L, LIU J C, WANG C H, et al. Structural alterations in chronic capsular versus pontine stroke[J]. Radiology, 2017, 285(1): 214-222. DOI: 10.1148/radiol.2017161055.
[12]
LIU J C, WANG C H, QIN W, et al. Cortical structural changes after subcortical stroke: Patterns and correlates[J]. Hum Brain Mapp, 2023, 44(2): 727-743. DOI: 10.1002/hbm.26095.
[13]
LIU Z W, XIN H Q, CHOPP M. Axonal remodeling of the corticospinal tract during neurological recovery after stroke[J]. Neural Regen Res, 2021, 16(5): 939-943. DOI: 10.4103/1673-5374.297060.
[14]
SAWADA M, YOSHINO-SAITO K, NINOMIYA T, et al. Reorganization of corticospinal projections after prominent recovery of finger dexterity from partial spinal cord injury in macaque monkeys[J/OL]. eNeuro, 2023: 2023.2002.2019.529046 [2023-06-14]. https://pubmed.ncbi.nlm.nih.gov/37468328. DOI: 10.1101/2023.02.19.529046
[15]
SINKE M R T, VAN TILBORG G A F, MEERWALDT A E, et al. Remote corticospinal tract degeneration after cortical stroke in rats may not preclude spontaneous sensorimotor recovery[J]. Neurorehabil Neural Repair, 2021, 35(11): 1010-1019. DOI: 10.1177/15459683211041318.
[16]
ROSSO C, LAMY J C. Prediction of motor recovery after stroke: being pragmatic or innovative?[J]. Curr Opin Neurol, 2020, 33(4): 482-487. DOI: 10.1097/WCO.0000000000000843.
[17]
SHAHEEN H A, SAYED S S, MAGDY M M, et al. Prediction of motor recovery after ischemic stroke: Clinical and diffusion tensor imaging study[J]. J Clin Neurosci, 2022, 96: 68-73. DOI: 10.1016/j.jocn.2021.12.029.
[18]
XIA Y M, HUANG G L, QUAN X M, et al. Dynamic Structural and Functional Reorganizations Following Motor Stroke[J/OL]. Med Sci Monit, 2021, 27: e929092 [2023-06-14]. https://www.ncbi.nlm.nih.gov/pubmed/33707406. DOI: 10.12659/MSM.929092.
[19]
PINTER D, GATTRINGER T, FANDLER-HOFLER S, et al. Early progressive changes in white matter integrity are associated with stroke recovery[J]. Transl Stroke Res, 2020, 11(6): 1264-1272. DOI: 10.1007/s12975-020-00797-x.
[20]
OEY N E, SAMUEL G S, LIM J K W, et al. Whole brain white matter microstructure and upper limb function: Longitudinal changes in fractional anisotropy and axial diffusivity in post-stroke patients[J/OL]. J Cent Nerv Syst Dis, 2019, 11: 1179573519863428 [2023-06-14]. https://www.ncbi.nlm.nih.gov/pubmed/31391787. DOI: 10.1177/1179573519863428.
[21]
ZOLKEFLEY M K I, FIRWANA Y M S, HATTA H Z M, et al. An overview of fractional anisotropy as a reliable quantitative measurement for the corticospinal tract (CST) integrity in correlation with a Fugl-Meyer assessment in stroke rehabilitation[J]. J Phys Ther Sci, 2021, 33(1): 75-83. DOI: 10.1589/jpts.33.75.
[22]
LU Q H, HUANG G L, CHEN L, et al. Structural and functional reorganization following unilateral internal capsule infarction contribute to neurological function recovery[J]. Neuroradiology, 2019, 61(10): 1181-1190. DOI: 10.1007/s00234-019-02278-x.
[23]
LIN L Y, RAMSEY L, METCALF N V, et al. Stronger prediction of motor recovery and outcome post-stroke by cortico-spinal tract integrity than functional connectivity[J/OL]. PLoS One, 2018, 13(8): e0202504 [2023-06-14]. https://www.ncbi.nlm.nih.gov/pubmed/30138409. DOI: 10.1371/journal.pone.0202504.
[24]
ITO K L, KIM B, LIU J, et al. Corticospinal tract lesion load originating from both ventral premotor and primary motor cortices are associated with post-stroke motor severity[J]. Neurorehabil Neural Repair, 2022, 36(3): 179-182. DOI: 10.1177/15459683211068441.
[25]
LIU J C, WANG C H, QIN W, et al. Corticospinal fibers with different origins impact motor outcome and brain after subcortical stroke[J]. Stroke, 2020, 51(7): 2170-2178. DOI: 10.1161/STROKEAHA.120.029508.
[26]
POOL E M, LEIMBACH M, BINDER E, et al. Network dynamics engaged in the modulation of motor behavior in stroke patients[J]. Hum Brain Mapp, 2018, 39(3): 1078-1092. DOI: 10.1002/hbm.23872.
[27]
HARRINGTON R M, CHAN E, ROUNDS A K, et al. Roles of lesioned and nonlesioned hemispheres in reaching performance poststroke[J]. Neurorehabil Neural Repair, 2020, 34(1): 61-71. DOI: 10.1177/1545968319876253.
[28]
BINDER E, LEIMBACH M, POOL E M, et al. Cortical reorganization after motor stroke: A pilot study on differences between the upper and lower limbs[J]. Hum Brain Mapp, 2021, 42(4): 1013-1033. DOI: 10.1002/hbm.25275.
[29]
CHUNYONG L, YINGKAI L, FUDA L, et al. Longitudinal changes of motor cortex function during motor recovery after stroke[J]. Top Stroke Rehabil, 2023, 30(4): 342-354. DOI: 10.1080/10749357.2022.2051829.
[30]
FAVRE I, ZEFFIRO T A, DETANTE O, et al. Upper limb recovery after stroke is associated with ipsilesional primary motor cortical activity: a meta-analysis[J]. Stroke, 2014, 45(4): 1077-1083. DOI: 10.1161/STROKEAHA.113.003168.
[31]
BANI-AHMED A, CIRSTEA C M. Ipsilateral primary motor cortex and behavioral compensation after stroke: a case series study[J]. Exp Brain Res, 2020, 238(2): 439-452. DOI: 10.1007/s00221-020-05728-8.
[32]
BUETEFISCH C M. Role of the contralesional hemisphere in post-stroke recovery of upper extremity motor function[J/OL]. Front Neurol, 2015, 6: 214 [2023-06-14]. https://www.ncbi.nlm.nih.gov/pubmed/26528236. DOI: 10.3389/fneur.2015.00214.
[33]
REHME A K, FINK G R, VON CRAMON D Y, et al. The role of the contralesional motor cortex for motor recovery in the early days after stroke assessed with longitudinal FMRI[J]. Cereb Cortex, 2011, 21(4): 756-768. DOI: 10.1093/cercor/bhq140.
[34]
CAO X J, WANG Z, CHEN X H, et al. Changes in resting-state neural activity and nerve fibres in ischaemic stroke patients with hemiplegia[J]. Brain Topogr, 2023, 36(2): 255-268. DOI: 10.1007/s10548-022-00937-6.
[35]
LIU X Y, QIU S T, WANG X Y, et al. Aberrant dynamic functional-structural connectivity coupling of large-scale brain networks in poststroke motor dysfunction[J/OL]. Neuroimage Clin, 2023, 37: 103332 [2023-06-14]. https://www.ncbi.nlm.nih.gov/pubmed/36708666. DOI: 10.1016/j.nicl.2023.103332
[36]
ZHENG X H, SUN L M, YIN D Z, et al. The plasticity of intrinsic functional connectivity patterns associated with rehabilitation intervention in chronic stroke patients[J]. Neuroradiology, 2016, 58(4): 417-427. DOI: 10.1007/s00234-016-1647-4.
[37]
GREFKES C, WARD N S. Cortical reorganization after stroke: how much and how functional?[J]. Neuroscientist, 2014, 20(1): 56-70. DOI: 10.1177/1073858413491147.
[38]
YU Q R, YIN D Z, KAISER M, et al. Pathway-specific mediation effect between structure, function, and motor impairment after subcortical stroke[J/OL]. Neurology, 2023, 100(6): e616-e626 [2023-06-14]. https://www.ncbi.nlm.nih.gov/pubmed/36307219. DOI: 10.1212/WNL.0000000000201495.
[39]
LEE J, PARK E, LEE A, et al. Recovery-related indicators of motor network plasticity according to impairment severity after stroke[J]. Eur J Neurol, 2017, 24(10): 1290-1299. DOI: 10.1111/ene.13377.
[40]
VOLZ L J, REHME A K, MICHELY J, et al. Shaping early reorganization of neural networks promotes motor function after stroke[J]. Cereb Cortex, 2016, 26(6): 2882-2894. DOI: 10.1093/cercor/bhw034.
[41]
PARK C H, CHANG W H, OHN S H, et al. Longitudinal changes of resting-state functional connectivity during motor recovery after stroke[J]. Stroke, 2011, 42(5): 1357-1362. DOI: 10.1161/STROKEAHA.110.596155.
[42]
TANG C Z, ZHAO Z Y, CHEN C, et al. Decreased functional connectivity of homotopic brain regions in chronic stroke patients: A resting state fMRI study[J/OL]. PLoS One, 2016, 11(4): e0152875 [2023-06-14]. https://www.ncbi.nlm.nih.gov/pubmed/27074031. DOI: 10.1371/journal.pone.0152875.
[43]
PAUL T, HENSEL L, REHME A K, et al. Early motor network connectivity after stroke: An interplay of general reorganization and state-specific compensation[J]. Hum Brain Mapp, 2021, 42(16): 5230-5243. DOI: 10.1002/hbm.25612.
[44]
SCHULZ R, BUCHHOLZ A, FREY B M, et al. Enhanced effective connectivity between primary motor cortex and intraparietal sulcus in well-recovered stroke patients[J]. Stroke, 2016, 47(2): 482-489. DOI: 10.1161/STROKEAHA.115.011641.
[45]
HENSEL L, LANGE F, TSCHERPEL C, et al. Recovered grasping performance after stroke depends on interhemispheric frontoparietal connectivity[J]. Brain, 2023, 146(3): 1006-1020. DOI: 10.1093/brain/awac157.
[46]
LI Y X, YU Z Y, WU P, et al. The disrupted topological properties of structural networks showed recovery in ischemic stroke patients: a longitudinal design study[J/OL]. BMC Neurosci, 2021, 22(1): 47 [2023-06-14]. https://www.ncbi.nlm.nih.gov/pubmed/34340655. DOI: 10.1186/s12868-021-00652-1.
[47]
HAN X, JIN H, LI K, et al. Acupuncture modulates disrupted whole-brain network after ischemic stroke: Evidence based on graph theory analysis[J/OL]. Neural Plast, 2020, 2020: 8838498 [2023-06-14]. https://www.ncbi.nlm.nih.gov/pubmed/32922447. DOI: 10.1155/2020/8838498.
[48]
NEMATI P R, BACKHAUS W, FELDHEIM J, et al. Brain network topology early after stroke relates to recovery[J/OL]. Brain Commun, 2022, 4(2): fcac049 [2023-06-14]. https://www.ncbi.nlm.nih.gov/pubmed/35274100. DOI: 10.1093/braincomms/fcac049.
[49]
WANG L, YU C S, CHEN H, et al. Dynamic functional reorganization of the motor execution network after stroke[J]. Brain, 2010, 133(Pt 4): 1224-1238. DOI: 10.1093/brain/awq043.
[50]
LEE J S, LEE M J, KIM D S, et al. Functional reorganization and prediction of motor recovery after a stroke: A graph theoretical analysis of functional networks[J]. Restor Neurol Neurosci, 2015, 33(6): 785-793. DOI: 10.3233/RNN-140467.
[51]
ALMEIDA S R M, STEFANO FILHO C A, VICENTINI J, et al. Modeling functional network topology following stroke through graph theory: functional reorganization and motor recovery prediction[J/OL]. Braz J Med Biol Res, 2022, 55: e12036 [2023-06-14]. https://www.ncbi.nlm.nih.gov/pubmed/35976269. DOI: 10.1590/1414-431X2022e12036.
[52]
HUANG Q, LIN D, HUANG S, et al. Brain functional topology alteration in right lateral occipital cortex is associated with upper extremity motor recovery[J/OL]. Front Neurol, 2022, 13: 780966 [2023-06-14]. https://www.ncbi.nlm.nih.gov/pubmed/35309550. DOI: 10.3389/fneur.2022.780966.

PREV Advances in MRI study of structural and functional changes in the limbic system of Parkinson,s disease with depression
NEXT Application and research progress of MR perfusion imaging in small cerebral vascular disease
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn