Share:
Share this content in WeChat
X
Review
Application and research progress of MR perfusion imaging in small cerebral vascular disease
LIU Dan  WANG Tao  WEI Mei  CAI Jiyong 

Cite this article as: LIU D, WANG T, WEI M, et al. Application and research progress of MR perfusion imaging in small cerebral vascular disease[J]. Chin J Magn Reson Imaging, 2023, 14(12): 136-140. DOI:10.12015/issn.1674-8034.2023.12.024.


[Abstract] Cerebral small vessel disease (CSVD), a common cause of stroke and dementia, is a dynamic whole-brain dysfunction disease caused by the abnormity of the neurovascular unit. Chronic cerebral ischemia and hypoperfusion, endothelial dysfunction and blood-brain barrier (BBB) disruption are considered to be important pathogenic mechanisms. Magnetic resonance perfusion imaging technology can provide multi-parameter about perfusion information, observe the changes of BBB permeability and vascular reactivity, so that CSVD can be diagnosed earlier, the technology can also give opportunity to early reversal, and provide technical support for the verification of potential protective drug intervention. In this article, we reviewed the application and research progress of three different magnetic resonance perfusion imaging techniques in CSVD.
[Keywords] cerebral small vessel disease;magnetic resonance imaging;magnetic resonance perfusion imaging;dynamic susceptibility contrast imaging;dynamic contrast enhanced imaging;arterial spin labeling

LIU Dan   WANG Tao*   WEI Mei   CAI Jiyong  

Department of Radiology, Bishan Hospital Affiliated to Chongqing Medical University (Chongqing Bishan District People's Hospital), Chongqing 402760, China

Corresponding author: WANG T, E-mail: phrade@126.com

Conflicts of interest   None.

ACKNOWLEDGMENTS Chongqing Science and Health Joint Medical Research Program Youth Program (No. 2022QNXM041).
Received  2023-05-14
Accepted  2023-11-06
DOI: 10.12015/issn.1674-8034.2023.12.024
Cite this article as: LIU D, WANG T, WEI M, et al. Application and research progress of MR perfusion imaging in small cerebral vascular disease[J]. Chin J Magn Reson Imaging, 2023, 14(12): 136-140. DOI:10.12015/issn.1674-8034.2023.12.024.

[1]
HU W L, YANG L, LI X T, et al. Chinese expert consensus on diagnosis and treatment of small cerebral vascular disease 2021[J]. Chin J Stroke, 2021, 16(7): 716-726. DOI: 10.3969/j.issn.1673-5765.2021.07.013.
[2]
GUROL M E, BIESSELS G J, POLIMENI J R. Advanced neuroimaging to unravel mechanisms of cerebral small vessel diseases[J]. Stroke, 2020, 51(1): 29-37. DOI: 10.1161/STROKEAHA.119.024149.
[3]
BHAGAT R, MARINI S, ROMERO J R. Genetic considerations in cerebral small vessel diseases[J/OL]. Front Neurol, 2023, 14: 1080168 [2023-05-06]. https://pubmed.ncbi.nlm.nih.gov/37168667. DOI: 10.3389/fneur.2023.1080168.
[4]
LITAK J, MAZUREK M, KULESZA B, et al. Cerebral small vessel disease[J/OL]. Int J Mol Sci, 2020, 21(24): 9729 [2023-05-06]. https://pubmed.ncbi.nlm.nih.gov/33419271. DOI: 10.3390/ijms21249729.
[5]
DUPERRON M G, KNOL M J, LE GRAND Q, et al. Genomics of perivascular space burden unravels early mechanisms of cerebral small vessel disease[J]. Nat Med, 2023, 29(4): 950-962. DOI: 10.1038/s41591-023-02268-w.
[6]
CANNISTRARO R J, BADI M, EIDELMAN B H, et al. CNS small vessel disease: A clinical review[J]. Neurology, 2019, 92(24): 1146-1156. DOI: 10.1212/WNL.0000000000007654.
[7]
REN B, TAN L, SONG Y, et al. Cerebral small vessel disease: neuroimaging features, biochemical markers, influencing factors, pathological mechanism and treatment[J/OL]. Front Neurol, 2022, 13: 843953 [2023-05-06]. https://pubmed.ncbi.nlm.nih.gov/35775047. DOI: 10.3389/fneur.2022.843953.
[8]
JOKINEN H, KOIKKALAINEN J, LAAKSO H M, et al. Global burden of small vessel disease-related brain changes on MRI predicts cognitive and functional decline[J]. Stroke, 2020, 51(1): 170-178. DOI: 10.1161/STROKEAHA.119.026170.
[9]
MORETTI R, CARUSO P. Small vessel disease: ancient description, novel biomarkers[J/OL]. Int J Mol Sci, 2022, 23(7): 3508 [2023-05-06]. https://pubmed.ncbi.nlm.nih.gov/35408867. DOI: 10.3390/ijms23073508.
[10]
IADECOLA C. The Neurovascular Unit Coming of Age: A journey through neurovascular coupling in health and disease[J]. Neuron, 2017, 96(1): 17-42. DOI: 10.1016/j.neuron.2017.07.030.
[11]
WONG S M, JANSEN J F A, ZHANG C E, et al. Blood-brain barrier impairment and hypoperfusion are linked in cerebral small vessel disease[J/OL]. Neurology, 2019, 92(15): e1669-e1677 [2023-05-06]. https://pubmed.ncbi.nlm.nih.gov/30867275. DOI: 10.1212/WNL.0000000000007263.
[12]
GAO Y, LI D, LIN J, et al. Cerebral small vessel disease: pathological mechanisms and potential therapeutic targets[J/OL]. Front Aging Neurosci, 2022, 14: 961661 [2023-05-06]. https://pubmed.ncbi.nlm.nih.gov/36034144. DOI: 10.3389/fnagi.2022.961661.
[13]
VAN DEN BRINK H, DOUBAL F N, DUERING M. Advanced MRI in cerebral small vessel disease[J]. Int J Stroke, 2023, 18(1): 28-35. DOI: 10.1177/17474930221091879.
[14]
ZHANG R, HUANG P, WANG S, et al. Decreased cerebral blood flow and delayed arterial transit are independently associated with white matter hyperintensity[J/OL]. Front Aging Neurosci, 2022, 14: 762745 [2023-05-06]. https://pubmed.ncbi.nlm.nih.gov/35711906. DOI: 10.3389/fnagi.2022.762745.
[15]
XU X H, CAO J B, SUN W G, et al. Clinical value of MR ASL perfusion imaging with multiple inversion recovery times in ischemic cerebrovascular diseases[J]. J Chin Clin Med Imag, 2022, 33(7): 457-461. DOI: 10.12117/jccmi.2022.07.001.
[16]
WANG S L, ZHU Y L, TANG M. Application of MR perfusion weighted imaging in the clinical diagnosis and treatment of patients with acute cerebral infarction[J]. Chinese Journal of Cerebrovascular Diseases, 2019, 16(5): 274-277. DOI: 10.3969/j.issn.1672-5921.2019.05.011.
[17]
FENG Z Q, QIAN W J, LI J, et al. Clinical application value of DSC-PWI combined with MRA in evaluating the prognosis of chronic cerebral infarction[J]. J Clin Radiol, 2019, 38(7): 1180-1185. DOI: 10.13437/j.cnki.jcr.2019.07.002.
[18]
ELSCHOT E P, BACKES W H, DE JONG J J A, et al. Assessment of the clinical feasibility of detecting subtle blood-brain barrier leakage in cerebral small vessel disease using dynamic susceptibility contrast MRI[J]. Magn Reson Imaging, 2023, 102: 55-61. DOI: 10.1016/j.mri.2023.04.004.
[19]
HERNANDEZ-GARCIA L, LAHIRI A, SCHOLLENBERGER J. Recent progress in ASL[J]. Neuroimage, 2019, 187: 3-16. DOI: 10.1016/j.neuroimage.2017.12.095.
[20]
NEUMANN K, GÜNTHER M, DÜZEL E, et al. Microvascular impairment in patients with cerebral small vessel disease assessed with arterial spin labeling magnetic resonance imaging: a pilot study[J/OL]. Front Aging Neurosci, 2022, 14: 871612 [2023-05-06]. https://pubmed.ncbi.nlm.nih.gov/35663571. DOI: 10.3389/fnagi.2022.871612.
[21]
GUO Y, XIA S, MA G L. Application of spin labeling in the evaluation of cerebral perfusion and collateral circulation[J]. Natl Med J China, 2021, 101(23): 1827-1830. DOI: 10.3760/cma.j.cn112137-20201121-03161.
[22]
LIN T Y, YOU H, FENG F, et al. Advances and applications of arterial spin labeling MR[J]. Chin J Radiol, 2019, 53(5): 431-434. DOI: 10.3760/cma.j.issn.1005-1201.2019.05.030.
[23]
HARRIS W J, ASSELIN M C, HINZ R, et al. In vivo methods for imaging blood-brain barrier function and dysfunction[J]. Eur J Nucl Med Mol Imaging, 2023, 50(4): 1051-1083. DOI: 10.1007/s00259-022-05997-1.
[24]
HUANG D, GUO Y, GUAN X, et al. Recent advances in arterial spin labeling perfusion MRI in patients with vascular cognitive impairment[J]. J Cereb Blood Flow Metab, 2023, 43(2): 173-184. DOI: 10.1177/0271678X221135353.
[25]
BAI T, YU S, FENG J. Advances in the role of endothelial cells in cerebral small vessel disease[J/OL]. Front Neurol, 2022, 13: 861714 [2023-05-06]. https://pubmed.ncbi.nlm.nih.gov/35481273. DOI: 10.3389/fneur.2022.861714.
[26]
XU W, BAI Q, DONG Q, et al. Blood-brain barrier dysfunction and the potential mechanisms in chronic cerebral hypoperfusion induced cognitive impairment[J/OL]. Front Cell Neurosci, 2022, 16: 870674 [2023-05-06]. https://pubmed.ncbi.nlm.nih.gov/35783093. DOI: 10.3389/fncel.2022.870674.
[27]
ZHANG C E, WONG S M, VAN DE HAAR H J, et al. Blood-brain barrier leakage is more widespread in patients with cerebral small vessel disease[J]. Neurology, 2017, 88(5): 426-432. DOI: 10.1212/WNL.0000000000003556.
[28]
STRINGER M S, HEYE A K, ARMITAGE P A, et al. Tracer kinetic assessment of blood-brain barrier leakage and blood volume in cerebral small vessel disease: Associations with disease burden and vascular risk factors[J/OL]. Neuroimage Clin, 2021, 32: 102883 [2023-05-06]. https://pubmed.ncbi.nlm.nih.gov/34911189. DOI: 10.1016/j.nicl.2021.102883.
[29]
LI M, LI Y, ZUO L, et al. Increase of blood-brain barrier leakage is related to cognitive decline in vascular mild cognitive impairment[J/OL]. BMC Neurol, 2021, 15, 21(1): 159 [2023-05-06]. https://pubmed.ncbi.nlm.nih.gov/33858381. DOI: 10.1186/s12883-021-02189-6.
[30]
KERKHOFS D, WONG S M, ZHANG E, et al. Blood-brain barrier leakage at baseline and cognitive decline in cerebral small vessel disease: a 2-year follow-up study[J]. Geroscience, 2021, 43(4): 1643-1652. DOI: 10.1007/s11357-021-00399-x.
[31]
GEORGAKIS M K, FANG R, DÜRING M, et al. Cerebral small vessel disease burden and cognitive and functional outcomes after stroke: A multicenter prospective cohort study[J]. Alzheimers Dement, 2023, 19(4): 1152-1163. DOI: 10.1002/alz.12744.
[32]
KANG X M, LI H B. Application and research progress of MRI on cerebral small vessel disease and vascular cognitive impairment[J]. Chin J Magn Reson Imaging, 2022, 13(9): 132-135. DOI: 10.12015/issn.1674-8034.2022.09.031.
[33]
LI Y, LI M, ZUO L, et al. Compromised Blood-Brain Barrier integrity is associated with total Magnetic Resonance Imaging burden of cerebral small vessel disease[J/OL]. Front Neurol, 2018, 9: 221 [2023-05-06]. https://pubmed.ncbi.nlm.nih.gov/29681883. DOI: 10.3389/fneur.2018.00221.
[34]
THRIPPLETON M J, BACKES W H, SOURBRON S, et al. Quantifying blood-brain barrier leakage in small vessel disease: Review and consensus recommendations[J]. Alzheimers Dement, 2019, 15(6): 840-858. DOI: 10.1016/j.jalz.2019.01.013.
[35]
HEYE A K, THRIPPLETON M J, ARMITAGE P A, et al. Tracer kinetic modelling for DCE-MRI quantification of subtle blood-brain barrier permeability[J]. Neuroimage, 2016, 125: 446-455. DOI: 10.1016/j.neuroimage.2015.10.018.
[36]
BERNBAUM M, MENON B K, FICK G, et al. Reduced blood flow in normal white matter predicts development of leukoaraiosis[J]. J Cereb Blood Flow Metab, 2015, 35(10): 1610-1615. DOI: 10.1038/jcbfm.2015.92.
[37]
NYLANDER R, FAHLSTRÖM M, ROSTRUP E, et al. Quantitative and qualitative MRI evaluation of cerebral small vessel disease in an elderly population: a longitudinal study[J]. Acta Radiol, 2018, 59(5): 612-618. DOI: 10.1177/0284185117727567.
[38]
DEWEY B E, XU X, KNUTSSON L, et al. MTT and blood-brain barrier disruption within asymptomatic vascular WM lesions[J]. AJNR Am J Neuroradiol, 2021, 42(8): 1396-1402. DOI: 10.3174/ajnr.A7165.
[39]
KŁOS J, VAN LAAR P J, SINNIGE P F, et al. Quantifying effects of radiotherapy-induced microvascular injury; review of established and emerging brain MRI techniques[J]. Radiother Oncol, 2019, 140: 41-53. DOI: 10.1016/j.radonc.2019.05.020.
[40]
MOODY D M, BELL M A, CHALLA V R. Features of the cerebral vascular pattern that predict vulnerability to perfusion or oxygenation deficiency: an anatomic study[J]. AJNR Am J Neuroradiol, 1990, 11(3): 431-439.
[41]
BINNIE L R, PAULS M M H, BENJAMIN P, et al. Test-retest reliability of arterial spin labelling for cerebral blood flow in older adults with small vessel disease[J]. Transl Stroke Res, 2022, 13(4): 583-594. DOI: 10.1007/s12975-021-00983-5.
[42]
DOLUI S, TISDALL D, VIDORRETA M, et al. Characterizing a perfusion-based periventricular small vessel region of interest[J/OL]. Neuroimage Clin, 2019, 23: 101897 [2023-05-06]. https://pubmed.ncbi.nlm.nih.gov/31233954. DOI: 10.1016/j.nicl.2019.101897.
[43]
JANN K, SHAO X, MA S J, et al. Evaluation of cerebral blood flow measured by 3D PCASL as biomarker of vascular cognitive impairment and dementia (VCID) in a cohort of elderly Latinx subjects at risk of small vessel disease[J/OL]. Front Neurosci, 2021, 15: 627627 [2023-05-06]. https://pubmed.ncbi.nlm.nih.gov/33584191. DOI: 10.3389/fnins.2021.627627.
[44]
CHEN X, LU D, GUO N, et al. Left ventricular ejection fraction and right atrial diameter are associated with deep regional CBF in arteriosclerotic cerebral small vessel disease[J/OL]. BMC Neurol, 2021, 21(1): 67 [2023-05-06]. https://pubmed.ncbi.nlm.nih.gov/33573621. DOI: 10.1186/s12883-021-02096-w.
[45]
ZHANG J. The neuropsychological and multi-modality magnetic resonance imaging studies in cerebral small vessel disease[D]. Hefei: Anhui Medical University, 2019.
[46]
LIU X, CHENG R, CHEN L, et al. Altered neurovascular coupling in subcortical ischemic vascular disease[J/OL]. Front Aging Neurosci, 2021, 13: 598365 [2023-05-06]. https://pubmed.ncbi.nlm.nih.gov/34054499. DOI: 10.3389/fnagi.2021.598365.
[47]
ZHOU X, ZHANG C, LI L, et al. Altered brain function in cerebral small vessel disease patients with gait disorders: a resting-state functional MRI study[J/OL]. Front Aging Neurosci, 2020, 12: 234 [2023-10-06]. https://pubmed.ncbi.nlm.nih.gov/33110408. DOI: 10.3389/fnagi.2020.00234.
[48]
SHAO X, MA S J, CASEY M, et al. Mapping water exchange across the blood-brain barrier using 3D diffusion-prepared arterial spin labeled perfusion MRI[J]. Magn Reson Med, 2019, 81(5): 3065-3079. DOI: 10.1002/mrm.27632.
[49]
LI Q Q, CHEN F, ZHONG J G, et al. Application of multiple post labeling delay time arterial spin labeling imaging in the quantitative blood flow analysis of brain subregions in healthy adults[J]. Chin J Intern Med, 2022, 61(8): 908-915. DOI: 10.3760/cma.j.cn112138-20211013-00703.
[50]
HUANG D, GUO Y, GUAN X, et al. Recent advances in arterial spin labeling perfusion MRI in patients with vascular cognitive impairment[J]. J Cereb Blood Flow Metab, 2023, 43(2): 173-184. DOI: 10.1177/0271678X221135353.
[51]
BLAIR G W, THRIPPLETON M J, SHI Y, et al. Intracranial hemodynamic relationships in patients with cerebral small vessel disease[J/OL]. Neurology, 2020, 94(21): e2258-e2269 [2023-05-06]. https://pubmed.ncbi.nlm.nih.gov/32366534. DOI: 10.1212/WNL.0000000000009483.
[52]
ZHAO M Y, FAN A P, CHEN D Y, et al. Cerebrovascular reactivity measurements using simultaneous 15O-water PET and ASL MRI: Impacts of arterial transit time, labeling efficiency, and hematocrit[J/OL]. Neuroimage, 2021, 233: 117955 [2023-05-06]. https://pubmed.ncbi.nlm.nih.gov/33716155. DOI: 10.1016/j.neuroimage.2021.117955.
[53]
ZHAO M Y, FAN A P, CHEN D Y , et al. Using arterial spin labeling to measure cerebrovascular reactivity in Moyamoya disease: Insights from simultaneous PET/MRI[J]. J Cereb Blood Flow Metab, 2022, 42(8): 1493-1506. DOI: 10.1177/0271678X221083471.
[54]
PASCHOAL A M, SECCHINATTO K F, SILVA P H R DA, et al. Contrast-agent-free state-of-the-art MRI on cerebral small vessel disease-part 1. ASL, IVIM, and CVR[J/OL]. NMR Biomed, 2022, 35(8): e4742 [2023-05-06]. https://pubmed.ncbi.nlm.nih.gov/35429194. DOI: 10.1002/nbm.4742.

PREV Progress of motor recovery-related neuroplasticity after stroke in MRI studies
NEXT Research progress in predicting molecular typing of glioma using magnetic resonance diffusion kurtosis imaging
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn