Share:
Share this content in WeChat
X
Review
Research progress of intravoxel incoherent motion and dynamic contrast-enhanced MRI in radiotherapy response prediction of nasopharyngeal carcinoma
WANG Nan  WANG Lijun 

Cite this article as: WANG N, WANG L J. Research progress of intravoxel incoherent motion and dynamic contrast-enhanced MRI in radiotherapy response prediction of nasopharyngeal carcinoma[J]. Chin J Magn Reson Imaging, 2023, 14(12): 161-165. DOI:10.12015/issn.1674-8034.2023.12.029.


[Abstract] Radiotherapy is the main and effective treatment for nasopharyngeal carcinoma (NPC). Reliable prediction of tumor treatment efficacy before radiotherapy can significantly optimize the treatment plans for NPC patients and prolong their survival time. Intravoxel incoherent motion (IVIM) and dynamic contrast-enhanced MRI (DCE-MRI) can provide multiple indicators to quantitatively describe the diffusion of water molecules and microcirculation perfusion information of tissue, which reflect the pathological changes of the lesion microscopically, and thereby contribute to the prediction of tumor treatment efficacy. The radiomics developed on them further improves the accuracy of prediction. We briefly introduced IVIM and DCE-MRI techniques, and focused on the current research status of these two MRI imaging features and related radiomics for predicting the treatment efficacy of NPC, as well as the main limitations and future research directions of each technology in clinical practice. Exploring the potential imaging biomarkers, IVIM and DCE-MRI will provide an objective foundation for personalized treatment and improve patient prognosis in the future.
[Keywords] nasopharyngeal carcinoma;therapy response;magnetic resonance imaging;dynamic contrast-enhanced;intravoxel incoherent motion;radiomics

WANG Nan   WANG Lijun*  

Department of Radiology, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China

Corresponding author: WANG L J, E-mail: wanglj345@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS Liaoning Medical Education Research Project (No. 2022-N005-05).
Received  2023-09-18
Accepted  2023-11-27
DOI: 10.12015/issn.1674-8034.2023.12.029
Cite this article as: WANG N, WANG L J. Research progress of intravoxel incoherent motion and dynamic contrast-enhanced MRI in radiotherapy response prediction of nasopharyngeal carcinoma[J]. Chin J Magn Reson Imaging, 2023, 14(12): 161-165. DOI:10.12015/issn.1674-8034.2023.12.029.

[1]
CANTÙ G. Nasopharyngeal carcinoma. A "different" head and neck tumour. Part A: from histology to staging[J]. Acta Otorhinolaryngol Ital, 2023, 43(2): 85-98. DOI: 10.14639/0392-100X-N2222.
[2]
CHEN Y P, CHAN A T C, LE Q T, et al. Nasopharyngeal carcinoma[J]. Lancet, 2019, 394(10192): 64-80. DOI: 10.1016/S0140-6736(19)30956-0.
[3]
JIROMARU R, NAKAGAWA T, YASUMATSU R. Advanced nasopharyngeal carcinoma: current and emerging treatment options[J/OL]. Cancer Manag Res, 2022, 14: 2681-2689 [2023-09-16]. https://pubmed.ncbi.nlm.nih.gov/36603793/. DOI: 10.2147/CMAR.S341472.
[4]
CANTÙ G. Nasopharyngeal carcinoma. A "different" head and neck tumour. Part B: treatment, prognostic factors, and outcomes[J]. Acta Otorhinolaryngol Ital, 2023, 43(3): 155-169. DOI: 10.14639/0392-100X-N2223.
[5]
JUAREZ-VIGNON WHALEY J J, AFKHAMI M, ONYSHCHENKO M, et al. Recurrent/metastatic nasopharyngeal carcinoma treatment from present to future: where are we and where are we heading?[J]. Curr Treat Options Oncol, 2023, 24(9): 1138-1166. DOI: 10.1007/s11864-023-01101-3.
[6]
ANDERSON N M, SIMON M C. The tumor microenvironment[J]. Curr Biol, 2020, 30(16): R921-R925. DOI: 10.1016/j.cub.2020.06.081.
[7]
LIAO C H, LIU X J, ZHANG C, et al. Tumor hypoxia: from basic knowledge to therapeutic implications[J/OL]. Semin Cancer Biol, 2023, 88: 172-186 [2023-09-17]. https://pubmed.ncbi.nlm.nih.gov/36603793/. DOI: 10.1016/j.semcancer.2022.12.011.
[8]
SORACE A G, ELKASSEM A A, GALGANO S J, et al. Imaging for response assessment in cancer clinical trials[J]. Semin Nucl Med, 2020, 50(6): 488-504. DOI: 10.1053/j.semnuclmed.2020.05.001.
[9]
IPPOLITO D, INCHINGOLO R, GRAZIOLI L, et al. Recent advances in non-invasive magnetic resonance imaging assessment of hepatocellular carcinoma[J]. World J Gastroenterol, 2018, 24(23): 2413-2426. DOI: 10.3748/wjg.v24.i23.2413.
[10]
ZHU Y, JIANG Z, WANG B, et al. Quantitative Dynamic-Enhanced MRI and Intravoxel Incoherent Motion Diffusion-Weighted Imaging for Prediction of the Pathological Response to Neoadjuvant Chemotherapy and the Prognosis in Locally Advanced Gastric Cancer[J/OL]. Front Oncol, 2022, 12: 841460 [2023-9-16]. https://pubmed.ncbi.nlm.nih.gov/35425711/. DOI: 10.3389/fonc.2022.841460.
[11]
FANG S B, YANG Y Y, CHEN B, et al. DWI and IVIM imaging in a murine model of rhabdomyosarcoma: correlations with quantitative histopathologic features[J]. J Magn Reson Imaging, 2022, 55(1): 225-233. DOI: 10.1002/jmri.27828.
[12]
LI Y, LI X, YU X, et al. Investigating the value of arterial spin labeling and intravoxel incoherent motion imaging on diagnosing nasopharyngeal carcinoma in T1 stage[J/OL]. Cancer Imaging, 2020, 20(1): 62 [2023-9-16]. https://pubmed.ncbi.nlm.nih.gov/32859273/. DOI: 10.1186/s40644-020-00339-6.
[13]
LI H, GONG G, WANG L, et al. The therapeutic utility of combining dynamic contrast-enhanced magnetic resonance imaging with arterial spin labeling in the staging of nasopharyngeal carcinoma[J/OL]. BMC Med Imaging, 2023, 23(1): 61 [2023-9-16]. https://pubmed.ncbi.nlm.nih.gov/37138205/. DOI: 10.1186/s12880-023-01016-3.
[14]
ZHANG G Y, YAN R F, LIU W Y, et al. Use of biexponential and stretched exponential models of intravoxel incoherent motion and dynamic contrast-enhanced magnetic resonance imaging to assess the proliferation of endometrial carcinoma[J]. Quant Imaging Med Surg, 2023, 13(4): 2568-2581. DOI: 10.21037/qims-22-688.
[15]
YIN P, XU J, SUN X, et al. Intravoxel incoherent motion and dynamic contrast-enhanced magnetic resonance imaging for neoadjuvant chemotherapy response evaluation in patients with osteosarcoma[J/OL]. Eur J Radiol, 2023, 162: 110790 [2023-9-16]. https://pubmed.ncbi.nlm.nih.gov/36963332/. DOI: 10.1016/j.ejrad.2023.110790.
[16]
LIANG X, CHEN X, YANG Z, et al. Early prediction of pathological complete response to neoadjuvant chemotherapy combining DCE-MRI and apparent diffusion coefficient values in breast Cancer[J/OL]. BMC Cancer, 2022, 22(1): 1250 [2023-9-16]. https://pubmed.ncbi.nlm.nih.gov/36460972/. DOI: 10.1186/s12885-022-10315-x.
[17]
WU H T, LI B K, YANG Z K, et al. Intravoxel incoherent motion diffusion-weighted imaging for early assessment of combined anti-angiogenic/chemotherapy for colorectal cancer liver metastases[J]. Quant Imaging Med Surg, 2022, 12(9): 4587-4600. DOI: 10.21037/qims-21-1220.
[18]
OBARA M, KWON J, YONEYAMA M, et al. Technical advancements in abdominal diffusion-weighted imaging[J]. Magn Reson Med Sci, 2023, 22(2): 191-208. DOI: 10.2463/mrms.rev.2022-0107.
[19]
FEDERAU C. Measuring perfusion: intravoxel incoherent motion MR imaging[J]. Magn Reson Imaging Clin N Am, 2021, 29(2): 233-242. DOI: 10.1016/j.mric.2021.01.003.
[20]
BIHAN D L, BRETON E, LALLEMAND D, et al. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging[J]. Radiology, 1988, 168(2): 497-505. DOI: 10.1148/radiology.168.2.3393671.
[21]
ZHAO D W, FAN W J, MENG L L, et al. Comparison of the pre-treatment functional MRI metrics' efficacy in predicting Locoregionally advanced nasopharyngeal carcinoma response to induction chemotherapy[J/OL]. Cancer Imaging, 2021, 21(1): 59 [2023-9-16]. https://pubmed.ncbi.nlm.nih.gov/34758876/. DOI: 10.1186/s40644-021-00428-0.
[22]
QIN Y, YU X, HOU J, et al. Predicting chemoradiotherapy response of nasopharyngeal carcinoma using texture features based on intravoxel incoherent motion diffusion-weighted imaging[J/OL]. Medicine (Baltimore), 2018, 97(30): e11676 [2023-9-16]. https://pubmed.ncbi.nlm.nih.gov/30045324/. DOI: 10.1097/MD.0000000000011676.
[23]
LIAO L, LIU T, WEI B. Prediction of short-term treatment outcome of nasopharyngeal carcinoma based on voxel incoherent motion imaging and arterial spin labeling quantitative parameters[J/OL]. Eur J Radiol Open, 2023, 10: 100466 [2023-9-16]. https://pubmed.ncbi.nlm.nih.gov/36590328/. DOI: 10.1016/j.ejro.2022.100466.
[24]
QAMAR S, KING A D, AI Q H, et al. Pre-treatment intravoxel incoherent motion diffusion-weighted imaging predicts treatment outcome in nasopharyngeal carcinoma[J/OL]. Eur J Radiol, 2020, 129: 109127 [2023-9-16]. https://pubmed.ncbi.nlm.nih.gov/32563165/. DOI: 10.1016/j.ejrad.2020.109127.
[25]
GUO T T, LIU S, ZHOU N, et al. Intravoxel incoherent motion magnetic resonance imaging for evaluating the efficacy of concurrent chemoradiotherapy in nasopharyngeal carcinoma[J]. Chin J Magn Reson Imag, 2017, 8(4): 254-259. DOI: 10.12015/issn.1674-8034.2017.04.004.
[26]
CHEN W B, CAI G H, ZHANG B, et al. To investigate the sensitivity of chemoradiotherapy on nasopharyngeal carcinoma using intravoxel incoherent motion MRI[J]. Chin J Radiol, 2019, 53(7): 549-554. DOI: 10.3760/cma.j.issn.1005?1201.2019.07.004.
[27]
CHEN W B, ZHANG B, LIANG L, et al. To predict the radiosensitivity of nasopharyngeal carcinoma using intravoxel incoherent motion MRI at 3.0 T[J]. Oncotarget, 2017, 8(32): 53740-53750. DOI: 10.18632/oncotarget.17367.
[28]
XIAO Y P, CHEN Y, CHEN Y B, et al. Longitudinal assessment of intravoxel incoherent motion diffusion weighted imaging in evaluating the radio-sensitivity of nasopharyngeal carcinoma treated with intensity-modulated radiation therapy[J]. Cancer Res Treat, 2019, 51(1): 345-356. DOI: 10.4143/crt.2018.089.
[29]
KANG K M, CHOI S H, KIM D E, et al. Application of cardiac gating to improve the reproducibility of intravoxel incoherent motion measurements in the head and neck[J]. Magn Reson Med Sci, 2017, 16(3): 190-202. DOI: 10.2463/mrms.mp.2016-0051.
[30]
PAUDYAL R, CHEN L, OH J H, et al. Nongaussian Intravoxel Incoherent Motion Diffusion Weighted and Fast Exchange Regime Dynamic Contrast-Enhanced-MRI of Nasopharyngeal Carcinoma: Preliminary Study for Predicting Locoregional Failure[J/OL]. Cancers (Basel), 2021, 13(5): 1128 [2023-9-16]. https://pubmed.ncbi.nlm.nih.gov/33800762/. DOI: 10.3390/cancers13051128.
[31]
EGNELL L, JEROME N P, ANDREASSEN M M S, et al. Effects of echo time on IVIM quantifications of locally advanced breast cancer in clinical diffusion-weighted MRI at 3 T[J/OL]. NMR Biomed, 2022, 35(5): e4654 [2023-9-16]. https://pubmed.ncbi.nlm.nih.gov/34967468/. DOI: 10.1002/nbm.4654.
[32]
CARUSO D, POLICI M, ZERUNIAN M, et al. Radiomics in Oncology, Part 1: Technical Principles and Gastrointestinal Application in CT and MRI[J/OL]. Cancers (Basel), 2021, 13(11) [2023-9-16]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8196591/. DOI: 10.3390/cancers13112522.
[33]
JIAN L, LIU Y, XIE Y, et al. MRI-Based Radiomics and Urine Creatinine for the Differentiation of Renal Angiomyolipoma With Minimal Fat From Renal Cell Carcinoma: A Preliminary Study[J/OL]. Front Oncol, 2022, 12: 876664 [2023-9-16]. https://pubmed.ncbi.nlm.nih.gov/35719934/. DOI: 10.3389/fonc.2022.876664.
[34]
ZHU Y F, LI Y S, ZHANG Y, et al. Radiomics model based on intravoxel incoherent motion and diffusion kurtosis imaging for predicting histopathological grade and Ki-67 expression level of soft tissue sarcomas[J]. Acta Radiol, 2023, 64(9): 2541-2551. DOI: 10.1177/02841851231179933.
[35]
ANDERSSON M, JALNEFJORD O, MONTELIUS M, et al. Evaluation of response in patients with hepatocellular carcinoma treated with intratumoral dendritic cell vaccination using intravoxel incoherent motion (IVIM) MRI and histogram analysis[J]. Acta Radiol, 2023, 64(1): 32-41. DOI: 10.1177/02841851211065935.
[36]
GUO Y, DAI G, XIONG X, et al. Intravoxel incoherent motion radiomics nomogram for predicting tumor treatment responses in nasopharyngeal carcinoma[J/OL]. Transl Oncol, 2023, 31: 101648 [2023-9-16]. https://pubmed.ncbi.nlm.nih.gov/36905870/. DOI: 10.1016/j.tranon.2023.101648.
[37]
GADDIKERI S, GADDIKERI R S, TAILOR T, et al. Dynamic contrast-enhanced MR imaging in head and neck cancer: techniques and clinical applications[J]. AJNR Am J Neuroradiol, 2016, 37(4): 588-595. DOI: 10.3174/ajnr.A4458.
[38]
ZHENG D C, YUE Q Y, REN W, et al. Early responses assessment of neoadjuvant chemotherapy in nasopharyngeal carcinoma by serial dynamic contrast-enhanced MR imaging[J/OL]. Magn Reson Imaging, 2017, 35: 125-131 [2023-09-17]. https://pubmed.ncbi.nlm.nih.gov/27587228/. DOI: 10.1016/j.mri.2016.08.011.
[39]
YANG C L, WU W L, JIN F, et al. A prospective clinical study with long-term follow-up of the correlation between dynamic contrast-enhanced magnetic resonance parameters and prognosis in patients with locally advanced nasopharyngeal carcinoma[J]. Chin J Radiol Med Prot, 2020, 40(6): 446-453. DOI: 10.3760/cma.j.issn.0254-5098.2020.06.006.
[40]
GUO X H, TIAN X C, LI W L, et al. Value of dynamic contrast-enhancement MRI for the prediction of chemoradiotheray efifcacy in nasopharyngeal carcinoma[J]. Chin J Magn Reson Imag, 2016, 7(11): 837-841. DOI: 10.12015/issn.1674-8034.2016.11.008.
[41]
CHAN S C, YEH C H, CHANG J T, et al. Combing MRI Perfusion and (18)F-FDG PET/CT Metabolic Biomarkers Helps Predict Survival in Advanced Nasopharyngeal Carcinoma: A Prospective Multimodal Imaging Study[J/OL]. Cancers (Basel), 2021, 13(7): 1550 [2023-9-16]. https://pubmed.ncbi.nlm.nih.gov/33800542/. DOI: 10.3390/cancers13071550.
[42]
MUI A W L, LEE A W M, NG W T, et al. Optimal time for early therapeutic response prediction in nasopharyngeal carcinoma with functional magnetic resonance imaging[J/OL]. Phys Imaging Radiat Oncol, 2023, 27: 100458 [2023-9-16]. https://pubmed.ncbi.nlm.nih.gov/37457666/. DOI: 10.1016/j.phro.2023.100458.
[43]
CHAN S C, NG S H, YEH C H, et al. Multiparametric positron emission tomography/magnetic resonance imaging in nasopharyngeal carcinoma: correlations between magnetic resonance imaging functional parameters and 18F-fluorodeoxyglucose positron emission tomography imaging biomarkers and their predictive value for treatment failure[J]. Tzu Chi Med J, 2021, 33(1): 61-69. DOI: 10.4103/tcmj.tcmj_4_20.
[44]
ZHENG D C, LAI G J, CHEN Y, et al. Integrating dynamic contrast-enhanced magnetic resonance imaging and diffusion kurtosis imaging for neoadjuvant chemotherapy assessment of nasopharyngeal carcinoma[J]. J Magn Reson Imaging, 2018, 48(5): 1208-1216. DOI: 10.1002/jmri.26164.
[45]
ZHENG D C, LIU M, YUE Q Y, et al. Dynamic contrast-enhanced MRI early predicts short-term control of nasopharyngeal carcinoma treated with neoadjuvant chemotherapy followed by intensity-modulated radiotherapy[J]. Chin J Magn Reson Imag, 2017, 8(3): 196-203. DOI: 10.12015/issn.1674-8034.2017.03.007.
[46]
QIN Y H, YU X P, HOU J, et al. Prognostic value of the pretreatment primary lesion quantitative dynamic contrast-enhanced magnetic resonance imaging for nasopharyngeal carcinoma[J]. Acad Radiol, 2019, 26(11): 1473-1482. DOI: 10.1016/j.acra.2019.01.021.
[47]
ZENG Q, XIONG F, LIU L, et al. Radiomics based on DCE-MRI for predicting response to neoadjuvant therapy in breast cancer[J]. Acad Radiol, 2023, 30(Suppl 2): S38-S49. DOI: 10.1016/j.acra.2023.04.009.
[48]
WANG J, HU Y, ZHOU X, et al. A radiomics model based on DCE-MRI and DWI may improve the prediction of estimating IDH1 mutation and angiogenesis in gliomas[J/OL]. Eur J Radiol, 2022, 147:110141 [2023-9-16]. https://pubmed.ncbi.nlm.nih.gov/34995947/. DOI: 10.1016/j.ejrad.2021.110141.
[49]
HUANG H, LI Z, XIA Y, et al. Association between radiomics features of DCE-MRI and CD8 (+) and CD4 (+) TILs in advanced gastric cancer[J/OL]. Pathol Oncol Res, 2023, 29: 1611001 [2023-9-16]. https://pubmed.ncbi.nlm.nih.gov/37342362/. DOI: 10.3389/pore.2023.1611001.
[50]
LI W Z, WU G, LI T S, et al. Dynamic contrast-enhanced magnetic resonance imaging-based radiomics for the prediction of progression-free survival in advanced nasopharyngeal carcinoma[J/OL]. Front Oncol, 2022, 12: 955866 [2023-9-16]. https://pubmed.ncbi.nlm.nih.gov/36338711/. DOI: 10.3389/fonc.2022.955866.
[51]
BOLOGNA M, CORINO V, CALARESO G, et al. Baseline MRI-Radiomics Can Predict Overall Survival in Non-Endemic EBV-Related Nasopharyngeal Carcinoma Patients[J/OL]. Cancers, 2020, 12(10): 2958 [2023-9-16]. https://pubmed.ncbi.nlm.nih.gov/33066161/. DOI: 10.3390/cancers12102958.
[52]
SUN M X, ZHAO M J, ZHAO L H, et al. A nomogram model based on pre-treatment and post-treatment MR imaging radiomics signatures: application to predict progression-free survival for nasopharyngeal carcinoma[J/OL]. Radiat Oncol, 2023, 18(1): 67 [2023-9-16]. https://pubmed.ncbi.nlm.nih.gov/37041545/. DOI: 10.1186/s13014-023-02257-w.
[53]
WANG A, XU H, ZHANG C, et al. Radiomic analysis of MRI for prediction of response to induction chemotherapy in nasopharyngeal carcinoma patients[J/OL]. Clin Radiol, 2023, 78(9): e644-e653 [2023-9-16]. https://pubmed.ncbi.nlm.nih.gov/37331848/. DOI: 10.1016/j.crad.2023.05.012.

PREV Research progress of multi-parameter MRI in the evaluation of treatment response and predicting the prognosis of nasopharyngeal carcinoma
NEXT Research progress on the mechanism of central remodeling of cervical spondylosis based on functional magnetic resonance imaging
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn