Share:
Share this content in WeChat
X
Review
Advances in the application of cardiac MRI in diagnosis of Fabry disease
LI Yuguo  ZHAO Ren  YU Yongqiang  HOU Weishu  LI Xiaohu 

Cite this article as: LI Y G, ZHAO R, YU Y Q, et al. Advances in the application of cardiac MRI in diagnosis of Fabry disease[J]. Chin J Magn Reson Imaging, 2023, 14(12): 172-176. DOI:10.12015/issn.1674-8034.2023.12.031.


[Abstract] Fabry disease is a rare X-linked genetic lysosomal storage disorder, which leads to reduction of α-galactosidase A and accumulation of metabolic substrates in heart and other organs. Cardiac magnetic resonance (CMR) with development of new techniques, such as mapping analysis, late gadolinium enhancement (LGE) assessment, strain imaging and perfusion imaging, plays an important role in distinguishing FD from other hypertrophic heart conditions. CMR offers a comprehensive evaluation of cardiac structure, function, and histological characteristics in a 'one-stop shop' approach. Our study comprehensively reviewed the characteristic features of FD in various CMR techniques, including tissue changes in the early stages of the disease. Furthermore, we emphasized the significant role of CMR in early diagnosis, risk stratification, prognosis assessment, and treatment monitoring in FD. The aim is to achieve early and accurate diagnosis of FD in the clinical practice, differentiate FD from other hypertrophic cardiac diseases, thus enabling early intervention and treatment for FD patients, ultimately improving prognosis.
[Keywords] Fabry disease;cardiac magnetic resonance;magnetic resonance imaging;T1 mapping;left ventricular hypertrophy;cardiomyopathy

LI Yuguo1   ZHAO Ren2   YU Yongqiang1   HOU Weishu1   LI Xiaohu1  

1 Department of Medical Imaging, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China

2 Department of Cardiovascular Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China *Correspondence to: LI X H, E-mail: lixiaohu@ahmu.edu.cn

Conflicts of interest   None.

ACKNOWLEDGMENTS National Natural Science Foundation of China (No. 82071897).
Received  2022-05-01
Accepted  2023-11-27
DOI: 10.12015/issn.1674-8034.2023.12.031
Cite this article as: LI Y G, ZHAO R, YU Y Q, et al. Advances in the application of cardiac MRI in diagnosis of Fabry disease[J]. Chin J Magn Reson Imaging, 2023, 14(12): 172-176. DOI:10.12015/issn.1674-8034.2023.12.031.

[1]
ROZENFELD P, FERIOZZI S. Contribution of inflammatory pathways to Fabry disease pathogenesis[J]. Mol Genet Metab, 2017, 122(3): 19-27. DOI: 10.1016/j.ymgme.2017.09.004.
[2]
HAGÈGE A, RÉANT P, HABIB G, et al. Fabry disease in cardiology practice: literature review and expert point of view[J]. Arch Cardiovasc Dis, 2019, 112(4): 278-287. DOI: 10.1016/j.acvd.2019.01.002.
[3]
Chinese Fabry Disease Expert Panel. Expert consensus for diagnosis and treatment of Fabry disease in China (2021)[J]. Chin J Intern Med, 2021, 60(4): 321-330. DOI: 10.3760/cma.j.cn112138-20201218-01028.
[4]
CHEN N. Fabry disease: timely diagnosis and treatment, improve clinical outcome[J]. Chin J Intern Med, 2021, 60(4): 299-301. DOI: 10.3760/cma.j.cn112138-20210122-00059.
[5]
ARENDS M, WANNER C, HUGHES D, et al. Characterization of classical and nonclassical fabry disease: a multicenter study[J]. J Am Soc Nephrol, 2017, 28(5): 1631-1641. DOI: 10.1681/ASN.2016090964.
[6]
KOZOR R, GRIEVE S M, TCHAN M C, et al. Cardiac involvement in genotype-positive Fabry disease patients assessed by cardiovascular MR[J]. Heart, 2016, 102(4): 298-302. DOI: 10.1136/heartjnl-2015-308494.
[7]
NORDIN S, KOZOR R, MEDINA-MENACHO K, et al. Proposed stages of myocardial phenotype development in fabry disease[J]. JACC Cardiovasc Imaging, 2019, 12(8Pt 2): 1673-1683. DOI: 10.1016/j.jcmg.2018.03.020.
[8]
SCHIFFMANN R, HUGHES D A, LINTHORST G E, et al. Screening, diagnosis, and management of patients with Fabry disease: conclusions from a "Kidney Disease: improving Global Outcomes" (KDIGO) Controversies Conference[J]. Kidney Int, 2017, 91(2): 284-293. DOI: 10.1016/j.kint.2016.10.004.
[9]
MEHTA A, RICCI R, WIDMER U, et al. Fabry disease defined: baseline clinical manifestations of 366 patients in the Fabry Outcome Survey[J]. Eur J Clin Invest, 2004, 34(3): 236-242. DOI: 10.1111/j.1365-2362.2004.01309.x.
[10]
WILSON H C, HOPKIN R J, MADUEME P C, et al. Arrhythmia and clinical cardiac findings in children with anderson-fabry disease[J]. Am J Cardiol, 2017, 120(2): 251-255. DOI: 10.1016/j.amjcard.2017.04.016.
[11]
XU Y F, YANG K, LIU X F, et al. Clinical and cardiac MR characteristics of heart involvement in patients with Fabry disease[J]. Chin J Radiol, 2022, 56(2): 168-174. DOI: 10.3760/cma.j.cn112149-20210416-00379.
[12]
VAN DER TOL L, SMID B E, POORTHUIS B J, et al. A systematic review on screening for Fabry disease: prevalence of individuals with genetic variants of unknown significance[J]. J Med Genet, 2014, 51(1): 1-9. DOI: 10.1136/jmedgenet-2013-101857.
[13]
LENDERS M, BRAND E. Fabry disease - a multisystemic disease with gastrointestinal manifestations[J/OL]. Gut Microbes, 2022, 14(1): 2027852 [2022-04-30]. https://pubmed.ncbi.nlm.nih.gov/35090382/. DOI: 10.1080/19490976.2022.2027852.
[14]
MILLER J J, KANACK A J, DAHMS N M. Progress in the understanding and treatment of Fabry disease[J/OL]. Biochim Biophys Acta Gen Subj, 2020, 1864(1): 129437 [2022-04-30]. https://pubmed.ncbi.nlm.nih.gov/31526868/. DOI: 10.1016/j.bbagen.2019.129437.
[15]
BAIG S, EDWARD N C, KOTECHA D, et al. Ventricular arrhythmia and sudden cardiac death in Fabry disease: a systematic review of risk factors in clinical practice[J]. Europace, 2018, 20(FI2): f153-f161. DOI: 10.1093/europace/eux261.
[16]
ZIMMERMAN S L. Grading cardiac risk in fabry disease: is MRI the answer?[J]. Radiology, 2020, 294(1): 50-51. DOI: 10.1148/radiol.2019192141.
[17]
YANG K, WEI M D, CHEN X Y, et al. Anderson-fabry disease: a rare phenocopy of hypertrophic cardiomyopathy[J/OL]. Eur Heart J Cardiovasc Imaging, 2021, 22(7): e94 [2022-04-30]. https://pubmed.ncbi.nlm.nih.gov/33370430/. DOI: 10.1093/ehjci/jeaa349.
[18]
CHAN R H, MARON B J, OLIVOTTO I, et al. Prognostic value of quantitative contrast-enhanced cardiovascular magnetic resonance for the evaluation of sudden death risk in patients with hypertrophic cardiomyopathy[J]. Circulation, 2014, 130(6): 484-495. DOI: 10.1161/CIRCULATIONAHA.113.007094.
[19]
VAN DER VEEN S J, HOLLAK C E M, VAN KUILENBURG A B P, et al. Developments in the treatment of Fabry disease[J]. J Inherit Metab Dis, 2020, 43(5): 908-921. DOI: 10.1002/jimd.12228.
[20]
YEUNG D F, SIRRS S, TSANG M Y C, et al. Echocardiographic assessment of patients with fabry disease[J]. J Am Soc Echocardiogr, 2018, 31(6): 639-649. DOI: 10.1016/j.echo.2018.01.016.
[21]
VIJAPURAPU R, BRADLOW W, LEYVA F, et al. Cardiac device implantation and device usage in Fabry and hypertrophic cardiomyopathy[J/OL]. Orphanet J Rare Dis, 2022, 17(1): 6 [2022-04-30]. https://pubmed.ncbi.nlm.nih.gov/34991670/. DOI: 10.1186/s13023-021-02133-4.
[22]
CAREDDA G, BASSAREO P P, CHERCHI M V, et al. Anderson-fabry disease: role of traditional and new cardiac MRI techniques[J/OL]. Br J Radiol, 2021, 94(1124): 20210020 [2022-04-30]. https://pubmed.ncbi.nlm.nih.gov/34233483/. DOI: 10.1259/bjr.20210020.
[23]
BOGAERT J, OLIVOTTO I. MR imaging in hypertrophic cardiomyopathy: from magnet to bedside[J]. Radiology, 2014, 273(2): 329-348. DOI: 10.1148/radiol.14131626.
[24]
HANNEMAN K, KARUR G R, WASIM S, et al. Left ventricular hypertrophy and late gadolinium enhancement at cardiac MRI are associated with adverse cardiac events in fabry disease[J]. Radiology, 2020, 294(1): 42-49. DOI: 10.1148/radiol.2019191385.
[25]
KARUR G R, ROBISON S, IWANOCHKO R M, et al. Use of myocardial T1 mapping at 3.0 T to differentiate anderson-fabry disease from hypertrophic cardiomyopathy[J]. Radiology, 2018, 288(2): 398-406. DOI: 10.1148/radiol.2018172613.
[26]
CAMPOREALE A, PIERONI M, PIERUZZI F, et al. Predictors of clinical evolution in prehypertrophic fabry disease[J/OL]. Circ Cardiovasc Imaging, 2019, 12(4): e008424 [2022-04-30]. https://pubmed.ncbi.nlm.nih.gov/30943767/. DOI: 10.1161/CIRCIMAGING.118.008424.
[27]
DEVA D P, HANNEMAN K, LI Q, et al. Cardiovascular magnetic resonance demonstration of the spectrum of morphological phenotypes and patterns of myocardial scarring in Anderson-Fabry disease[J/OL]. J Cardiovasc Magn Reson, 2016, 18: 14 [2022-04-30]. https://pubmed.ncbi.nlm.nih.gov/27036375/. DOI: 10.1186/s12968-016-0233-6.
[28]
MOONEN A, LAL S, INGLES J, et al. Prevalence of Anderson-Fabry disease in a cohort with unexplained late gadolinium enhancement on cardiac MRI[J/OL]. Int J Cardiol, 2020, 304: 122-124 [2022-04-30]. https://pubmed.ncbi.nlm.nih.gov/31987665/. DOI: 10.1016/j.ijcard.2019.12.059.
[29]
NOJIRI A, ANAN I, MORIMOTO S, et al. Clinical findings of gadolinium-enhanced cardiac magnetic resonance in Fabry patients[J]. J Cardiol, 2020, 75(1): 27-33. DOI: 10.1016/j.jjcc.2019.09.002.
[30]
TAO E, MOISEEV A, MERSHINA E, et al. Predictive value of cardiac MRI in patients with fabry disease[J/OL]. Radiology, 2020, 296(2): E123 [2022-04-30]. https://pubmed.ncbi.nlm.nih.gov/32396044/. DOI: 10.1148/radiol.2020200909.
[31]
FADL S A, REVELS J W, REZAI GHARAI L, et al. Cardiac MRI of hereditary cardiomyopathy[J]. Radiographics, 2022, 42(3): 625-643. DOI: 10.1148/rg.210147.
[32]
SCHELBERT E B, MESSROGHLI D R. State of the art: clinical applications of cardiac T1 mapping[J]. Radiology, 2016, 278(3): 658-676. DOI: 10.1148/radiol.2016141802.
[33]
SADO D M, WHITE S K, PIECHNIK S K, et al. Identification and assessment of Anderson-Fabry disease by cardiovascular magnetic resonance noncontrast myocardial T1 mapping[J]. Circ Cardiovasc Imaging, 2013, 6(3): 392-398. DOI: 10.1161/CIRCIMAGING.112.000070.
[34]
HAAF P, GARG P, MESSROGHLI D R, et al. Cardiac T1 Mapping and Extracellular Volume (ECV) in clinical practice: a comprehensive review[J/OL]. J Cardiovasc Magn Reson, 2016, 18(1): 89 [2022-04-30]. https://pubmed.ncbi.nlm.nih.gov/27899132/. DOI: 10.1186/s12968-016-0308-4.
[35]
LIANG L, WANG X, YU Y, et al. T1 mapping and extracellular volume in cardiomyopathy showing left ventricular hypertrophy: differentiation between hypertrophic cardiomyopathy and hypertensive heart disease[J/OL]. Int J Gen Med, 2022, 15: 4163-4173 [2022-04-30]. https://pubmed.ncbi.nlm.nih.gov/35465304/. DOI: 10.2147/IJGM.S350673.
[36]
PASTEUR-ROUSSEAU A, ODOUARD S, SOUIBRI K, et al. Rôle de l'imagerie cardiaque dans les cardiomyopathies infiltratives[J]. Ann De Cardiol D'angéiologie, 2022, 71(2): 63-74. DOI: 10.1016/j.ancard.2022.01.001.
[37]
PICA S, SADO D M, MAESTRINI V, et al. Reproducibility of native myocardial T1 mapping in the assessment of Fabry disease and its role in early detection of cardiac involvement by cardiovascular magnetic resonance[J/OL]. J Cardiovasc Magn Reson, 2014, 16(1): 99 [2022-04-30]. https://pubmed.ncbi.nlm.nih.gov/25475749/. DOI: 10.1186/s12968-014-0099-4.
[38]
PIERONI M, CHIMENTI C, RICCI R, et al. Early detection of Fabry cardiomyopathy by tissue Doppler imaging[J]. Circulation, 2003, 107(15): 1978-1984. DOI: 10.1161/01.CIR.0000061952.27445.A0.
[39]
PERRY R, SHAH R, SAIEDI M, et al. The role of cardiac imaging in the diagnosis and management of anderson-fabry disease[J]. JACC Cardiovasc Imaging, 2019, 12(7Pt 1): 1230-1242. DOI: 10.1016/j.jcmg.2018.11.039.
[40]
SHE J Q, GUO J J, YU Y F, et al. Left ventricular outflow tract obstruction in hypertrophic cardiomyopathy: the utility of myocardial strain based on cardiac MR tissue tracking[J]. J Magn Reson Imaging, 2021, 53(1): 51-60. DOI: 10.1002/jmri.27307.
[41]
MATHUR S, DREISBACH J G, KARUR G R, et al. Loss of base-to-apex circumferential strain gradient assessed by cardiovascular magnetic resonance in Fabry disease: relationship to T1 mapping, late gadolinium enhancement and hypertrophy[J/OL]. J Cardiovasc Magn Reson, 2019, 21(1): 45 [2022-04-30]. https://pubmed.ncbi.nlm.nih.gov/31366357/. DOI: 10.1186/s12968-019-0557-0.
[42]
CHENG-BARON J, CHOW K, PAGANO J J, et al. Quantification of circumferential, longitudinal, and radial global fractional shortening using steady-state free precession cines: a comparison with tissue-tracking strain and application in Fabry disease[J]. Magn Reson Med, 2015, 73(2): 586-596. DOI: 10.1002/mrm.25166.
[43]
AMZULESCU M S, LANGET H, SALOUX E, et al. Head-to-head comparison of global and regional two-dimensional speckle tracking strain versus cardiac magnetic resonance tagging in a multicenter validation study[J/OL]. Circ Cardiovasc Imaging, 2017, 10(11): e006530 [2022-04-30]. https://pubmed.ncbi.nlm.nih.gov/29138230/. DOI: 10.1161/CIRCIMAGING.117.006530.
[44]
EITEL I, STIERMAIER T, LANGE T, et al. Cardiac magnetic resonance myocardial feature tracking for optimized prediction of cardiovascular events following myocardial infarction[J]. JACC Cardiovasc Imaging, 2018, 11(10): 1433-1444. DOI: 10.1016/j.jcmg.2017.11.034.
[45]
BERNARDINI A, CAMPOREALE A, PIERONI M, et al. Atrial dysfunction assessed by cardiac magnetic resonance as an early marker of fabry cardiomyopathy[J]. JACC Cardiovasc Imaging, 2020, 13(10): 2262-2264. DOI: 10.1016/j.jcmg.2020.05.011.
[46]
LABOMBARDA F, SALOUX E, MILESI G, et al. Loss of base-to-apex circumferential strain gradient: a specific pattern of Fabry cardiomyopathy?[J]. Echocardiography, 2017, 34(4): 504-510. DOI: 10.1111/echo.13496.
[47]
WANG S C, TAPIA D, KIMONIS V E, et al. Regional strain pattern and correlation with cardiac magnetic resonance imaging in fabry disease[J]. J Cardiovasc Echogr, 2021, 31(3): 131-136. DOI: 10.4103/jcecho.jcecho_119_20.
[48]
BROWN L A E, ONCIUL S C, BROADBENT D A, et al. Fully automated, inline quantification of myocardial blood flow with cardiovascular magnetic resonance: repeatability of measurements in healthy subjects[J/OL]. J Cardiovasc Magn Reson, 2018, 20(1): 48 [2022-04-30]. https://pubmed.ncbi.nlm.nih.gov/29983119/. DOI: 10.1186/s12968-018-0462-y.
[49]
KELLMAN P, HANSEN M S, NIELLES-VALLESPIN S, et al. Myocardial perfusion cardiovascular magnetic resonance: optimized dual sequence and reconstruction for quantification[J/OL]. J Cardiovasc Magn Reson, 2017, 19(1): 43 [2022-04-30]. https://pubmed.ncbi.nlm.nih.gov/28385161/. DOI: 10.1186/s12968-017-0355-5.
[50]
CHIMENTI C, MORGANTE E, TANZILLI G, et al. Angina in fabry disease reflects coronary small vessel disease[J]. Circ Heart Fail, 2008, 1(3): 161-169. DOI: 10.1161/CIRCHEARTFAILURE.108.769729.
[51]
KNOTT K D, AUGUSTO J B, NORDIN S, et al. Quantitative myocardial perfusion in fabry disease[J/OL]. Circ Cardiovasc Imaging, 2019, 12(7): e008872 [2022-04-30]. https://pubmed.ncbi.nlm.nih.gov/31269811/. DOI: 10.1161/CIRCIMAGING.119.008872.
[52]
ENGBLOM H, XUE H, AKIL S, et al. Fully quantitative cardiovascular magnetic resonance myocardial perfusion ready for clinical use: a comparison between cardiovascular magnetic resonance imaging and positron emission tomography[J/OL]. J Cardiovasc Magn Reson, 2017, 19(1): 78 [2022-04-30]. https://pubmed.ncbi.nlm.nih.gov/29047385/. DOI: 10.1186/s12968-017-0388-9.
[53]
MOON J C, SACHDEV B, ELKINGTON A G, et al. Gadolinium enhanced cardiovascular magnetic resonance in Anderson-Fabry disease. Evidence for a disease specific abnormality of the myocardial interstitium[J]. Eur Heart J, 2003, 24(23): 2151-2155. DOI: 10.1016/j.ehj.2003.09.017.

PREV Research progress on the mechanism of central remodeling of cervical spondylosis based on functional magnetic resonance imaging
NEXT Research progress of 4D Flow MRI in hypertrophic cardiomyopathy
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn