Share:
Share this content in WeChat
X
Review
Application progress of MRI in the diagnosis and treatment of multiple myeloma
ZHANG Yurou  ZHU Xinyu  GUO Li  Li Zhili 

Cite this article as: ZHANG Y R, ZHU X Y, GUO L, et al. Application progress of MRI in the diagnosis and treatment of multiple myeloma[J]. Chin J Magn Reson Imaging, 2023, 14(12): 192-197. DOI:10.12015/issn.1674-8034.2023.12.035.


[Abstract] Multiple myeloma (MM) is a malignant hematologic tumor characterized by clonal proliferation of plasma cells. Timely and accurate diagnosis and treatment can improve the prognosis and prolong the survival of patients. MRI is currently recognized as the most sensitive imaging modality for detecting bone marrow infiltration in MM and plays an important role in the diagnosis, treatment, and prognosis of MM. This article reviews the latest advances in MRI in the diagnosis, differential diagnosis, treatment, and prognosis of MM, to provide new ideas for the clinical diagnosis and treatment of MM patients.
[Keywords] multiple myeloma;magnetic resonance imaging;diffusion-weighted imaging;radiomics;application progress

ZHANG Yurou   ZHU Xinyu   GUO Li*   Li Zhili  

Department of Radiology, the Second Affiliated Hospital of Kunming Medical University, Kunming 650101

Corresponding author: GUO L, E-mail: guolidoc@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS Medical Discipline Leaders Training Program of Yunnan Provincial Health and Health Commission (No. D-2019024).
Received  2023-09-21
Accepted  2023-11-06
DOI: 10.12015/issn.1674-8034.2023.12.035
Cite this article as: ZHANG Y R, ZHU X Y, GUO L, et al. Application progress of MRI in the diagnosis and treatment of multiple myeloma[J]. Chin J Magn Reson Imaging, 2023, 14(12): 192-197. DOI:10.12015/issn.1674-8034.2023.12.035.

[1]
EDELSTYN G A, GILLESPIE P J, GREBBELL F S. The radiological demonstration of osseous metastases. Experimental observations[J]. Clin Radiol, 1967, 18(2): 158-162. DOI: 10.1016/s0009-9260(67)80010-2.
[2]
HILLENGASS J, USMANI S, RAJKUMAR S V, et al. International myeloma working group consensus recommendations on imaging in monoclonal plasma cell disorders[J/OL]. Lancet Oncol, 2019, 20(6): e302-e312 [2023-08-27]. https://pubmed.ncbi.nlm.nih.gov/31162104/. DOI: 10.1016/S1470-2045(19)30309-2.
[3]
STECCO A, BUEMI F, IANNESSI A, et al. Current concepts in tumor imaging with whole-body MRI with diffusion imaging (WB-MRI-DWI) in multiple myeloma and lymphoma[J]. Leuk Lymphoma, 2018, 59(11): 2546-2556. DOI: 10.1080/10428194.2018.1434881.
[4]
KOPPULA B, KAPTUCH J, HANRAHAN C J. Imaging of multiple myeloma: usefulness of MRI and PET/CT[J]. Semin Ultrasound CT MR, 2013, 34(6): 566-577. DOI: 10.1053/j.sult.2013.05.006.
[5]
DURIE B G M. The role of anatomic and functional staging in myeloma: description of Durie/Salmon plus staging system[J]. Eur J Cancer, 2006, 42(11): 1539-1543. DOI: 10.1016/j.ejca.2005.11.037.
[6]
WALKER R, BARLOGIE B, HAESSLER J, et al. Magnetic resonance imaging in multiple myeloma: diagnostic and clinical implications[J]. J Clin Oncol, 2007, 25(9): 1121-1128. DOI: 10.1200/JCO.2006.08.5803.
[7]
LECOUVET F E, BOYADZHIEV D, COLLETTE L, et al. MRI versus 18F-FDG-PET/CT for detecting bone marrow involvement in multiple myeloma: diagnostic performance and clinical relevance[J]. Eur Radiol, 2020, 30(4): 1927-1937. DOI: 10.1007/s00330-019-06469-1.
[8]
XIE L B, TIAN X C, MA L, et al. Value of dynamic contrast-enhanced MRI in diagnosis of lung cancer and different types of benign lung nodules[J]. Chin J Magn Reson Imag, 2018, 9(3): 192-196. DOI: 10.12015/issn.1674-8034.2018.03.006.
[9]
VAN DEN BERGHE T, VERSTRAETE K L, LECOUVET F E, et al. Review of diffusion-weighted imaging and dynamic contrast-enhanced MRI for multiple myeloma and its precursors (monoclonal gammopathy of undetermined significance and smouldering myeloma)[J]. Skeletal Radiol, 2022, 51(1): 101-122. DOI: 10.1007/s00256-021-03903-8.
[10]
WANG L, JIANG T, JIANG H, et al. Diagnostic value of 3.0T MRI multiple b value diffusion-weighted planar echo imaging for multiple myeloma[J]. J Cap Med Univ, 2018, 39(3): 320-326. DOI: 10.3969/j.issn.1006-7795.2018.03.003.
[11]
SINGH S, PILAVACHI E, DUDEK A, et al. Whole body MRI in multiple myeloma: Optimising image acquisition and read times[J/OL]. PLoS One, 2020, 15(1): e0228424 [2023-08-30]. https://pubmed.ncbi.nlm.nih.gov/31999774/. DOI: 10.1371/journal.pone.0228424.
[12]
YUE Z, LIU W L, REN J P, et al. Value of splenic intravoxel incoherent motion diffusion-weighted imaging in Child-Pugh grading of cirrhotic patients[J]. J Med Imag, 2020, 30(5):780-783.
[13]
WANG M, ZHANG X D. Research progress of chemical exchange saturation transfer imaging technology in musculoskeletal system[J]. Chin J Magn Reson Imag, 2021, 12(9): 116-120. DOI: 10.12015/issn.1674-8034.2021.09.030.
[14]
CROFT J, RIDDELL A, KOH D M, et al. Inter-observer agreement of baseline whole body MRI in multiple myeloma[J/OL]. Cancer Imaging, 2020, 20(1): 48 [2023-08-31]. https://pubmed.ncbi.nlm.nih.gov/32665028/. DOI: 10.1186/s40644-020-00328-9.
[15]
IPPOLITO D, GIANDOLA T, MAINO C, et al. Diagnostic value of whole-body MRI short protocols in bone lesion detection in multiple myeloma patients[J/OL]. Diagnostics, 2021, 11(6): 1053 [2023-08-31]. https://pubmed.ncbi.nlm.nih.gov/34201122/. DOI: 10.3390/diagnostics11061053.
[16]
SUN M T, CHENG J L, REN C P, et al. Evaluation of diffuse bone marrow infiltration pattern in monoclonal plasma cell DiseasesbyQuantitative whole-body magnetic resonance imaging[J]. Acad Radiol, 2022, 29(4): 490-500. DOI: 10.1016/j.acra.2021.06.015.
[17]
YAMADA A, ARAKI Y, TANAKA Y, et al. Relevance of diffusion-weighted imaging with background body signal suppression for staging, prognosis, morphology, treatment response, and apparent diffusion coefficient in plasma-cell neoplasms: a single-center, retrospective study[J/OL]. PLoS One, 2021, 16(7): e0253025 [2023-09-01]. https://pubmed.ncbi.nlm.nih.gov/34242226/. DOI: 10.1371/journal.pone.0253025.
[18]
PEI X J, PAN Z Y, LIAN Y F, et al. Predictive value of fat fraction quantification of lumbar spine for newly diagnosed multiple myeloma[J]. Chin Gen Pract, 2021, 24(20): 2601-2606. DOI: 10.12114/j.issn.1007-9572.2021.00.557.
[19]
WEI L, WANG F Z, YIN G L, et al. Diagnostic value of PDFF and OP/IP for multiple myeloma bone disease of thoracic and lumbar spine[J]. Cancer Res Prev Treat, 2020, 47(2): 115-118. DOI: 10.3971/j.issn.1000-8578.2020.19.0906.
[20]
FANG J G, ZOU Y F, CHEN L J, et al. Significance of diffusion-weighted imaging compared with conventional sequence in grading diagnosis of multiple myeloma[J]. Acta Univ Med Nanjing Nat Sci, 2018, 38(2): 242-246. DOI: 10.7655/NYDXBNS.
[21]
DU J, HOU J. Interpretation of diagnosis of multiple myeloma in the guidelines for the diagnosis and management of multiple myeloma in China (2022 revision)[J]. Chin J Intern Med, 2022, 61(5): 463-465. DOI: 10.3760/cma.j.cn112138-20220316-00182.
[22]
WANG Q, ZHANG L, LI S, et al. Histogram analysis based on apparent diffusion coefficient maps of bone marrow in multiple myeloma: an independent predictor for high-risk patients classified by the revised international staging system[J/OL]. Acad Radiol, 2022, 29(6): e98-e107 [2023-08-31]. https://pubmed.ncbi.nlm.nih.gov/34452820/. DOI: 10.1016/j.acra.2021.07.010.
[23]
JO A, JUNG J Y, LEE S Y, et al. Prognosis prediction in initially diagnosed multiple myeloma patients using intravoxel incoherent motion-diffusion weighted imaging and multiecho Dixon imaging[J]. J Magn Reson Imaging, 2021, 53(2): 491-501. DOI: 10.1002/jmri.27321.
[24]
LANG N, ZHANG E L, SU M Y, et al. Dynamic contrast-enhanced MRI in differential diagnosis of spinal myeloma and primary non-hodgkin lymphoma[J]. Chin J Med Imag, 2018, 26(2): 135-139. DOI: 10.3969/j.issn.1005-5185.2018.02.014.
[25]
LIU J F, GUO W, ZENG P E, et al. Vertebral MRI-based radiomics model to differentiate multiple myeloma from metastases: influence of features number on logistic regression model performance[J]. Eur Radiol, 2022, 32(1): 572-581. DOI: 10.1007/s00330-021-08150-y.
[26]
XIONG X, WANG J, HU S, et al. Differentiating between multiple myeloma and metastasis subtypes of lumbar vertebra lesions using machine learning-based radiomics[J/OL]. Front Oncol, 2021, 11: 601699 [2023-08-31]. https://pubmed.ncbi.nlm.nih.gov/33718148/. DOI: 10.3389/fonc.2021.601699.
[27]
ZHANG S, LIU M H, LI S, et al. An MRI-based radiomics nomogram for differentiating spinal metastases from multiple myeloma[J/OL]. Cancer Imaging, 2023, 23(1): 72 [2023-08-31]. https://pubmed.ncbi.nlm.nih.gov/37488622/. DOI: 10.1186/s40644-023-00585-4.
[28]
ZIOGAS D C, DIMOPOULOS M A, KASTRITIS E. Prognostic factors for multiple myeloma in the era of novel therapies[J]. Expert Rev Hematol, 2018, 11(11): 863-879. DOI: 10.1080/17474086.2018.1537776.
[29]
WENNMANN M, HIELSCHER T, KINTZELÉ L, et al. Spatial distribution of focal lesions in whole-body MRI and influence of MRI protocol on staging in patients with smoldering multiple myeloma according to the new SLiM-CRAB-criteria[J/OL]. Cancers, 2020, 12(9): 2537 [2023-08-31]. https://pubmed.ncbi.nlm.nih.gov/32906608/. DOI: 10.3390/cancers12092537.
[30]
COSTA L J, NISTA E J, BUADI F K, et al. Prediction of poor mobilization of autologous CD34+ cells with growth factor in multiple myeloma patients: implications for risk-stratification[J]. Biol Blood Marrow Transplant, 2014, 20(2): 222-228. DOI: 10.1016/j.bbmt.2013.11.003.
[31]
BAKEER M, ZUBAIR A C, ROY V. Low baseline platelet count predicts poor response to plerixafor in patients with multiple myeloma undergoing autologous stem cell mobilization[J]. Cytotherapy, 2020, 22(1): 16-20. DOI: 10.1016/j.jcyt.2019.10.008.
[32]
TAKASU M, HIGASHINO R, SUEOKA T, et al. Prediction of mobilized hematopoietic stem cell yield in patients with multiple myeloma: usefulness of whole-body MRI-derived indices[J/OL]. PLoS One, 2023, 18(3): e0283241 [2023-09-01]. https://pubmed.ncbi.nlm.nih.gov/37000837/. DOI: 10.1371/journal.pone.0283241.
[33]
RAJKUMAR S V. Multiple myeloma: 2020 update on diagnosis, risk-stratification and management[J]. Am J Hematol, 2020, 95(5): 548-567. DOI: 10.1002/ajh.25791.
[34]
KOSMALA A, BLEY T, PETRITSCH B. Imaging of multiple myeloma[J]. Rofo, 2019, 191(9): 805-816. DOI: 10.1055/a-0864-2084.
[35]
MAI E K, HIELSCHER T, KLOTH J K, et al. Association between magnetic resonance imaging patterns and baseline disease features in multiple myeloma: analyzing surrogates of tumour mass and biology[J]. Eur Radiol, 2016, 26(11): 3939-3948. DOI: 10.1007/s00330-015-4195-0.
[36]
LIU J F, WANG C J, GUO W, et al. A preliminary study using spinal MRI-based radiomics to predict high-risk cytogenetic abnormalities in multiple myeloma[J]. Radiol Med, 2021, 126(9): 1226-1235. DOI: 10.1007/s11547-021-01388-y.
[37]
KUMAR S, PAIVA B, ANDERSON K C, et al. International Myeloma Working Group consensus criteria for response and minimal residual disease assessment in multiple myeloma[J/OL]. Lancet Oncol, 2016, 17(8): e328-e346 [2023-09-02]. https://pubmed.ncbi.nlm.nih.gov/27511158/. DOI: 10.1016/S1470-2045(16)30206-6.
[38]
DURIE B G M, HOERING A, ABIDI M H, et al. Bortezomib with lenalidomide and dexamethasone versus lenalidomide and dexamethasone alone in patients with newly diagnosed myeloma without intent for immediate autologous stem-cell transplant (SWOG S0777): a randomised, open-label, phase 3 trial[J]. Lancet, 2017, 389(10068): 519-527. DOI: 10.1016/S0140-6736(16)31594-X.
[39]
PARK H Y, KIM K W, YOON M A, et al. Role of whole-body MRI for treatment response assessment in multiple myeloma: comparison between clinical response and imaging response[J/OL]. Cancer Imaging, 2020, 20(1): 14 [2023-08-31]. https://pubmed.ncbi.nlm.nih.gov/32000858/. DOI: 10.1186/s40644-020-0293-6.
[40]
ZHANG Y, XIONG X, FU Z Z, et al. Whole-body diffusion-weighted MRI for evaluation of response in multiple myeloma patients following bortezomib-based therapy: a large single-center cohort study[J/OL]. Eur J Radiol, 2019, 120: 108695 [2023-08-31]. https://pubmed.ncbi.nlm.nih.gov/31589995/. DOI: 10.1016/j.ejrad.2019.108695.
[41]
DONG H Z, HUANG W Y, JI X D, et al. Prediction of early treatment response in multiple myeloma using MY-RADS total burden score, ADC, and fat fraction from whole-body MRI: impact of Anemia on predictive performance[J]. AJR Am J Roentgenol, 2022, 218(2): 310-319. DOI: 10.2214/AJR.21.26534.
[42]
EKERT K, HINTERLEITNER C, BAUMGARTNER K, et al. Extended texture analysis of non-enhanced whole-body MRI image data for response assessment in multiple myeloma patients undergoing systemic therapy[J/OL]. Cancers, 2020, 12(3): 761 [2023-08-31]. https://pubmed.ncbi.nlm.nih.gov/32213834/. DOI: 10.3390/cancers12030761.
[43]
LI Y, YIN P, LIU Y, et al. Radiomics models based on magnetic resonance imaging for prediction of the response to bortezomib-based therapy in patients with multiple myeloma[J/OL]. Biomed Res Int, 2022, 2022: 6911246 [2023-08-31]. https://pubmed.ncbi.nlm.nih.gov/36105939/. DOI: 10.1155/2022/6911246.
[44]
GU Y W, WU Y, YAN R X, et al. Application of MRI water-fat separation technology in patients with multiple myeloma[J]. J Exp Hematol, 2022, 30(1): 183-188. DOI: 10.19746/j.cnki.issn1009-2137.2022.01.030.
[45]
KOUTOULIDIS V, TERPOS E, PAPANIKOLAOU N, et al. Comparison of MRI features of fat fraction and ADC for early treatment response assessment in participants with multiple myeloma[J]. Radiology, 2022, 304(1): 137-144. DOI: 10.1148/radiol.211388.
[46]
XIA Z Y, MO X X, WEI L N, et al. Iterative decomposition of water and fat with echo asymmetrical and least-squares estimation quantitation sequence(IDEAL-IQ) for diagnosis of multiple myeloma bone disease[J]. Chin J Med Imag Technol, 2023, 39(5): 737-740. DOI: 10.13929/j.issn.1003-3289.2023.05.022.
[47]
XIONG X, ZHU Q, ZHOU Z, et al. Discriminating minimal residual disease status in multiple myeloma based on MRI: utility of radiomics and comparison of machine-learning methods[J/OL]. Clin Radiol, 2023, 78(11): e839-e846 [2023-09-01]. https://pubmed.ncbi.nlm.nih.gov/37586967/. DOI: 10.1016/j.crad.2023.07.011.
[48]
WU Z J, WANG H X, ZHENG Y M, et al. Lumbar MR-based radiomics nomogram for detecting minimal residual disease in patients with multiple myeloma[J]. Eur Radiol, 2023, 33(8): 5594-5605. DOI: 10.1007/s00330-023-09540-0.
[49]
RASCHE L, ALAPAT D, KUMAR M, et al. Combination of flow cytometry and functional imaging for monitoring of residual disease in myeloma[J]. Leukemia, 2019, 33(7): 1713-1722. DOI: 10.1038/s41375-018-0329-0.
[50]
BELOTTI A, RIBOLLA R, CANCELLI V, et al. Predictive role of diffusion-weighted whole-body MRI (DW-MRI) imaging response according to MY-RADS criteria after autologous stem cell transplantation in patients with multiple myeloma and combined evaluation with MRD assessment by flow cytometry[J]. Cancer Med, 2021, 10(17): 5859-5865. DOI: 10.1002/cam4.4136.
[51]
MOSEBACH J, SHAH S, DELORME S, et al. Prognostic significance of tumor burden assessed by whole-body magnetic resonance imaging in multiple myeloma patients treated with allogeneic stem cell transplantation[J]. Haematologica, 2018, 103(2): 336-343. DOI: 10.3324/haematol.2017.176073.
[52]
WENNMANN M, HIELSCHER T, KINTZELÉ L, et al. Analyzing longitudinal wb-MRI data and clinical course in a cohort of former smoldering multiple myeloma patients: connections between MRI findings and clinical progression patterns[J/OL]. Cancers, 2021, 13(5): 961 [2023-09-17]. https://pubmed.ncbi.nlm.nih.gov/33668879/. DOI: 10.3390/cancers13050961.
[53]
RASCHE L, ANGTUACO E J, ALPE T L, et al. The presence of large focal lesions is a strong independent prognostic factor in multiple myeloma[J]. Blood, 2018, 132(1): 59-66. DOI: 10.1182/blood-2018-04-842880.
[54]
ZHANG L, WANG Q, WU X, et al. Baseline bone marrow ADC value of diffusion-weighted MRI: a potential independent predictor for progression and death in patients with newly diagnosed multiple myeloma[J]. Eur Radiol, 2021, 31(4): 1843-1852. DOI: 10.1007/s00330-020-07295-6.
[55]
TERAO T, MACHIDA Y, NARITA K, et al. Total diffusion volume in MRI vs. total lesion glycolysis in PET/CT for tumor volume evaluation of multiple myeloma[J]. Eur Radiol, 2021, 31(8): 6136-6144. DOI: 10.1007/s00330-021-07687-2.
[56]
LI Y, LIU Y, YIN P, et al. MRI-based bone marrow radiomics nomogram for prediction of overall survival in patients with multiple myeloma[J/OL]. Front Oncol, 2021, 11: 709813 [2023-08-31]. https://pubmed.ncbi.nlm.nih.gov/34926240/. DOI: 10.3389/fonc.2021.709813.
[57]
LOMBARDI A F, WONG J H, HIGH R, et al. AcidoCEST MRI evaluates the bone microenvironment in multiple myeloma[J]. Mol Imaging Biol, 2021, 23(6): 865-873. DOI: 10.1007/s11307-021-01611-2.
[58]
WANG J, YE C Y, CHEN C, et al. Glucose transporter GLUT1 expression and clinical outcome in solid tumors: a systematic review and meta-analysis[J]. Oncotarget, 2017, 8(10): 16875-16886. DOI: 10.18632/oncotarget.15171.
[59]
KORENCHAN D E, BOK R, SRIRAM R, et al. Hyperpolarized in vivo pH imaging reveals grade-dependent acidification in prostate cancer[J]. Oncotarget, 2019, 10(58): 6096-6110. DOI: 10.18632/oncotarget.27225.
[60]
RASCHE L, KUMAR M, GERSHNER G, et al. Lack of Spleen Signal on Diffusion Weighted MRI is associated with High Tumor Burden and Poor Prognosis in Multiple Myeloma: a Link to Extramedullary Hematopoiesis?[J]. Theranostics, 2019, 9(16): 4756-4763. DOI: 10.7150/thno.33289.
[61]
TERAO T, MACHIDA Y, TATEISHI U, et al. Association of loss of spleen visualization on whole-body diffusion-weighted imaging with prognosis and tumor burden in patients with multiple myeloma[J/OL]. Sci Rep, 2021, 11(1): 23978 [2023-09-01]. https://pubmed.ncbi.nlm.nih.gov/34907317/. DOI: 10.1038/s41598-021-03496-1.

PREV Research progress of magnetic resonance imaging in evaluating regional lymph node metastasis of rectal cancer
NEXT Clinical advancements in the application of compressed sensing techniques in magnetic resonance imaging
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn