Share:
Share this content in WeChat
X
Review
Clinical advancements in the application of compressed sensing techniques in magnetic resonance imaging
LI Shuo  WANG Xiaochun 

Cite this article as: LI S, WANG X C. Clinical advancements in the application of compressed sensing techniques in magnetic resonance imaging[J]. Chin J Magn Reson Imaging, 2023, 14(12): 198-202. DOI:10.12015/issn.1674-8034.2023.12.036.


[Abstract] Compressed sensing (CS) is a technique that significantly shortens image acquisition time by undersampling the k-space. Simultaneously, it employs advanced algorithms to reconstruct the original signal, ensuring the quality of the reconstructed image. Applying CS to MRI can accelerate imaging speed while maintaining image quality, effectively reducing artifacts, and promoting rapid disease diagnosis. This article starts with the application origin of CS technology, aiming to explore the current clinical applications of CS technology in whole-body magnetic resonance imaging examinations, including brain, heart, vascular, and musculoskeletal imaging. It emphasizes the potential value of CS in the field of medicine, providing crucial insights for future clinical practices.
[Keywords] compressed sensing;magnetic resonance imaging;cerebral imaging;cardiac imaging;vascular imaging;osteoarticular imaging

LI Shuo1   WANG Xiaochun2*  

1 College of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China

2 Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan 030001, China

Corresponding author: WANG X C, E-mail: 2010xiaochun@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS National Natural Science Foundation of China (No. 81971592).
Received  2023-08-30
Accepted  2023-12-05
DOI: 10.12015/issn.1674-8034.2023.12.036
Cite this article as: LI S, WANG X C. Clinical advancements in the application of compressed sensing techniques in magnetic resonance imaging[J]. Chin J Magn Reson Imaging, 2023, 14(12): 198-202. DOI:10.12015/issn.1674-8034.2023.12.036.

[1]
PAWAR K, EGAN G, ZHANG J. Multichannel compressive sensing MRI using noiselet encoding[J/OL]. PLoS One, 2015, 10(5): e0126386 [2023-08-30]. https://pubmed.ncbi.nlm.nih.gov/25965548/. DOI: 10.1371/journal.pone.0126386.
[2]
FENG L, BENKERT T, BLOCK K T, et al. Compressed sensing for body MRI[J]. J Magn Reson Imaging, 2017, 45(4): 966-987. DOI: 10.1002/jmri.25547.
[3]
JOHNSON P M, RECHT M P, KNOLL F. Improving the speed of MRI with artificial intelligence[J]. Semin Musculoskelet Radiol, 2020, 24(1): 12-20. DOI: 10.1055/s-0039-3400265.
[4]
PAN K, LIU Q Q, TANG L L, et al. Study on acceleration efficiency and image quality of artificial intelligence compressed sensing and compressed sensing in knee MRI[J]. Chin J Magn Reson Imag, 2022, 13(5): 94-98. DOI: 10.12015/issn.1674-8034.2022.05.017.
[5]
ZHAO Y, PENG C, WANG S, et al. The feasibility investigation of AI -assisted compressed sensing in kidney MR imaging: an ultra-fast T2WI imaging technology[J/OL]. BMC Med Imaging, 2022, 22(1): 119 [2023-08-30]. https://pubmed.ncbi.nlm.nih.gov/35787673/. DOI: 10.1186/s12880-022-00842-1.
[6]
GAO T, LU Z, WANG F, et al. Using the compressed sensing technique for lumbar vertebrae imaging: comparison with conventional parallel imaging[J]. Curr Med Imaging, 2021, 17(8): 1010-1017. DOI: 10.2174/1573405617666210126155814.
[7]
YE J C. Compressed sensing MRI: a review from signal processing perspective[J/OL]. BMC Biomed Eng, 2019, 1: 8 [2023-08-30]. https://pubmed.ncbi.nlm.nih.gov/32903346/. DOI: 10.1186/s42490-019-0006-z.
[8]
UEDA T, OHNO Y, YAMAMOTO K, et al. Compressed sensing and deep learning reconstruction for women's pelvic MRI denoising: Utility for improving image quality and examination time in routine clinical practice[J/OL]. Eur J Radiol, 2021, 134: 109430 [2023-08-30]. https://pubmed.ncbi.nlm.nih.gov/33276249/. DOI: 10.1016/j.ejrad.2020.109430.
[9]
HOLLINGSWORTH K G. Reducing acquisition time in clinical MRI by data undersampling and compressed sensing reconstruction[J/OL]. Phys Med Biol, 2015, 60(21): R297-322 [2023-08-30]. https://pubmed.ncbi.nlm.nih.gov/26448064/. DOI: 10.1088/0031-9155/60/21/R297.
[10]
PENG X, YING L, LIU Q, et al. Incorporating reference in parallel imaging and compressed sensing[J]. Magn Reson Med, 2015, 73(4): 1490-1504. DOI: 10.1002/mrm.25272.
[11]
DIECKMEYER M, ROY A G, SENAPATI J, et al. Effect of MRI acquisition acceleration via compressed sensing and parallel imaging on brain volumetry[J/]. MAGMA, 2021, 34(4): 487-497. DOI: 10.1007/s10334-020-00906-9.
[12]
ALTMANN S, HALFMANN M C, ABIDOYE I, et al. Compressed sensing acceleration of cardiac cine imaging allows reliable and reproducible assessment of volumetric and functional parameters of the left and right atrium[J]. Eur Radiol, 2021, 31(10): 7219-7230. DOI: 10.1007/s00330-021-07830-z.
[13]
VERMERSCH M, LONGÈRE B, COISNE A, et al. Compressed sensing real-time cine imaging for assessment of ventricular function, volumes and mass in clinical practice[J]. Eur Radiol, 2020, 30(1): 609-619. DOI: 10.1007/s00330-019-06341-2.
[14]
SAKATA A, FUSHIMI Y, OKADA T, et al. Evaluation of cerebral arteriovenous shunts: a comparison of parallel imaging time-of-flight magnetic resonance angiography (TOF-MRA) and compressed sensing TOF-MRA to digital subtraction angiography[J]. Neuroradiology, 2021, 63(6): 879-887. DOI: 10.1007/s00234-020-02581-y.
[15]
WANG Q, ZHAO W, XING X, et al. Feasibility of AI-assisted compressed sensing protocols in knee MR imaging: a prospective multi-reader study[J]. Eur Radiol, 2023, 33(12): 8585-8596. DOI: 10.1007/s00330-023-09823-6.
[16]
LI G, WU D, XU Z, et al. Evaluation of an accelerated 3D modulated flip-angle technique in refocused imaging with an extended echo-train sequence with compressed sensing for imaging of the knee: comparison with routine 2D MRI sequences[J/OL]. Clin Radiol, 2021, 76(2): 158.e13-158.e18 [2023-08-30]. https://pubmed.ncbi.nlm.nih.gov/33250173/. DOI: 10.1016/j.crad.2020.10.012.
[17]
TOLEDANO-MASSIAH S, SAYADI A, DE BOER R, et al. Accuracy of the compressed sensing accelerated 3D-FLAIR sequence for the detection of MS plaques at 3T[J]. AJNR Am J Neuroradiol, 2018, 39(3): 454-458. DOI: 10.3174/ajnr.A5517.
[18]
KIM D, HEO Y J, JEONG H W, et al. Compressed sensing time-of-flight magnetic resonance angiography with high spatial resolution for evaluating intracranial aneurysms: comparison with digital subtraction angiography[J]. Neuroradiol J, 2021, 34(3): 213-221. DOI: 10.1177/1971400920988099.
[19]
MEISTER R L, GROTH M, JÜRGENS J H W, et al. Compressed sense in pediatric brain tumor MR imaging: Assessment of image quality, examination time and energy release[J]. Clin Neuroradiol, 2022, 32(3): 725-733. DOI: 10.1007/s00062-021-01112-3.
[20]
MÖNCH S, SOLLMANN N, HOCK A, et al. Magnetic resonance imaging of the brain using compressed sensing - Quality assessment in daily clinical routine[J]. Clinical Neuroradiol, 2020, 30(2): 279-286. DOI: 10.1007/s00062-019-00789-x.
[21]
DUAN Y, ZHANG J, ZHUO Z, et al. Accelerating brain 3D T1-weighted turbo field echo MRI using compressed sensing-sensitivity encoding (CS-SENSE)[J/OL]. Eur J Radiol, 2020, 131: 109255 [2023-08-30]. https://pubmed.ncbi.nlm.nih.gov/32920218/. DOI: 10.1016/j.ejrad.2020.109255.
[22]
VRANIC J E, CROSS N M, WANG Y, et al. Compressed sensing-sensitivity encoding (CS-SENSE) accelerated brain imaging: Reduced scan time without reduced image quality[J]. AJNR Am J Neuroradiol, 2019, 40(1): 92-98. DOI: 10.3174/ajnr.A5905.
[23]
KIM H G, OH S W, HAN D, et al. Accelerated 3D T2-weighted images using compressed sensing for pediatric brain imaging[J]. Neuroradiology, 2022, 64(12): 2399-2407. DOI: 10.1007/s00234-022-03028-2.
[24]
BUSTIN A, FUIN N, BOTNAR R M, et al. From compressed-sensing to artificial intelligence-Based cardiac MRI reconstruction[J/OL]. Front Cardiovasc Med, 2020, 7: 17 [2023-08-30]. https://pubmed.ncbi.nlm.nih.gov/32158767/. DOI: 10.3389/fcvm.2020.00017.
[25]
TAKAKADO M, KIDO T, OGAWA R, et al. Free-breathing cardiovascular cine magnetic resonance imaging using compressed-sensing and retrospective motion correction: accurate assessment of biventricular volume at 3T[J]. Jpn J Radiol, 2023, 41(2): 142-152. DOI: 10.1007/s11604-022-01344-4.
[26]
LONGÈRE B, ABASSEBAY N, GKIZAS C, et al. A new compressed sensing cine cardiac MRI sequence with free-breathing real-time acquisition and fully automated motion-correction: A comprehensive evaluation[J/OL]. Diagn Interv Imaging, 2023: S2211-5684(23)00123-7[2023-08-30]. https://pubmed.ncbi.nlm.nih.gov/37328394/. DOI: 10.1016/j.diii.2023.06.005.
[27]
LI Y, LIN L, WANG J, et al. Cardiac cine with compressed sensing real-time imaging and retrospective motion correction for free-breathing assessment of left ventricular function and strain in clinical practice[J]. Quant Imaging Med Surg, 2023, 13(4): 2262-2277. DOI: 10.21037/qims-22-596.
[28]
ZOU Q, XU H Y, FU C, et al. Utility of single-shot compressed sensing cardiac magnetic resonance cine imaging for assessment of biventricular function in free-breathing and arrhythmic pediatric patients[J]. Int J Cardiol, 2021, 338: 258-264. DOI: 10.1016/j.ijcard.2021.06.043.
[29]
NARESH N K, MALONE L, FUJIWARA T, et al. Use of compressed sensing to reduce scan time and breath-holding for cardiac cine balanced steady-state free precession magnetic resonance imaging in children and young adults[J]. Pediatr Radiol, 2021, 51(7): 1192-1201. DOI: 10.1007/s00247-020-04952-2
[30]
CURIONE D, CILIBERTI P, MONTI C B, et al. Compressed sensing cardiac cine imaging compared with standard balanced steady-state free precession cine imaging in a pediatric population[J/OL]. Radiol Cardiothorac Imaging, 2022, 4(2): e210109 [2023-08-30]. https://pubmed.ncbi.nlm.nih.gov/35506130/. DOI: 10.1148/ryct.210109.
[31]
SUH C H, JUNG S C, LEE H B, et al. High-Resolution magnetic resonance imaging using compressed sensing for intracranial and extracranial arteries: Comparison with conventional parallel imaging[J]. Korean J Radiol, 2019, 20(3): 487-497. DOI: 10.3348/kjr.2018.0424.
[32]
ZHANG Y K, ZHANG H N, CHANG P P, et al. An imaging study of three-dimensional simultaneous non-contrast angiography and intraplaque hemorrhage of whole brain based on compressed sensing[J]. Chin J Magn Reson Imag, 2022, 13(12): 124-129. DOI: 10.12015/issn.1674-8034.
[33]
GUGGENBERGER K, KRAFFT A J, LUDWIG U, et al. High-resolution compressed-sensing T1 black-blood MRI: A new multipurpose sequence in vascular neuroimaging?[J]. Clin Neuroradiol, 2021, 31(1): 207-216. DOI: 10.1007/s00062-019-00867-0.
[34]
ZHU C, TIAN B, CHEN L, et al. Accelerated whole brain intracranial vessel wall imaging using black blood fast spin echo with compressed sensing (CS-SPACE)[J]. MAGMA, 2018, 31(3): 457-467. DOI: 10.1007/s10334-017-0667-3.
[35]
PATHROSE A, MA L, BERHANE H, et al. Highly accelerated aortic 4D flow MRI using compressed sensing: Performance at different acceleration factors in patients with aortic disease[J]. Magn Reson Med, 2021, 85(4): 2174-2187. DOI: 10.1002/mrm.28561.
[36]
SUI H, GONG Y, LIU L, et al. Comparison of artificial intelligence-assisted compressed sensing (ACS) and routine two-dimensional sequences on lumbar spine imaging[J]. J Pain Res, 2023, 16: 257-267. DOI: 10.2147/JPR.S388219.
[37]
QIU J, LIU J, BI Z, et al. An investigation of 2D spine magnetic resonance imaging (MRI) with compressed sensing (CS)[J]. Skeletal Radiol, 2022, 51(6): 1273-1283. DOI: 10.1007/s00256-021-03954-x.
[38]
BRATKE G, RAU R, WEISS K, et al. Accelerated MRI of the lumbar spine using compressed sensing: Quality and efficiency[J/OL]. J Magn Reson Imaging, 2019, 49(7): e164-e175 [2023-08-30]. https://pubmed.ncbi.nlm.nih.gov/30267462/. DOI: 10.1002/jmri.26526.
[39]
ALAIA E F, SUBHAS N. Shoulder MR imaging and MR arthrography techniques: New advances[J]. Magn Reson Imaging Clin N Am, 2020, 28(2): 153-163. DOI: 10.1016/j.mric.2019.12.001.
[40]
OBAMA Y, OHNO Y, YAMAMOTO K, et al. MR imaging for shoulder diseases: Effect of compressed sensing and deep learning reconstruction on examination time and imaging quality compared with that of parallel imaging[J]. Magn Reson Imaging, 2022, 94: 56-63. DOI: 10.1016/j.mri.2022.08.004.
[41]
SHIRAISHI K, NAKAURA T, UETANI H, et al. Combination use of compressed sensing and deep learning for shoulder magnetic resonance imaging with various sequences[J]. J Comput Assist Tomogr, 2023, 47(2): 277-283. DOI: 10.1097/RCT.0000000000001418.
[42]
IUGA A I, ABDULLAYEV N, WEISS K, et al. Accelerated MRI of the knee. Quality and efficiency of compressed sensing[J/OL]. Eur J Radiol, 2020, 132: 109273 [2023-08-30]. https://pubmed.ncbi.nlm.nih.gov/32957000/. DOI: 10.1016/j.ejrad.2020.109273.
[43]
ENDLER C H, FARON A, ISAAK A, et al. Fast 3D isotropic proton density-weighted fat-saturated MRI of the knee at 1.5 T with compressed sensing: Comparison with conventional multiplanar 2D sequences[J]. Rofo, 2021, 193(7): 813-821. DOI: 10.1055/a-1337-3351.
[44]
YI J, LEE Y H, HAHN S, et al. Fast isotropic volumetric magnetic resonance imaging of the ankle: Acceleration of the three-dimensional fast spin echo sequence using compressed sensing combined with parallel imaging[J]. Eur J Radiol, 2019, 112: 52-58. DOI: 10.1016/j.ejrad.2019.01.009.
[45]
FOREMAN S C, NEUMANN J, HAN J, et al. Deep learning-based acceleration of Compressed Sense MR imaging of the ankle[J]. Eur Radiol, 2022, 32(12): 8376-8385. DOI: 10.1007/s00330-022-08919-9.
[46]
LEE H K, SONG J S, JANG W, et al. Improved single breath-hold SSFSE sequence for liver MRI based on compressed sensing: Evaluation of image quality compared with conventional T2-weighted sequences[J/OL]. Diagnostics (Basel), 2022, 12(9): 2164 [2023-08-30]. https://pubmed.ncbi.nlm.nih.gov/36140565/. DOI: 10.3390/diagnostics12092164.
[47]
SUN W, WANG W, ZHU K, et al. Feasibility of compressed sensing technique for isotropic dynamic contrast-enhanced liver magnetic resonance imaging[J/OL]. Eur J Radiol, 2021, 139: 109729 [2023-08-30]. https://pubmed.ncbi.nlm.nih.gov/33905976/. DOI: 10.1016/j.ejrad.2021.109729.
[48]
CHOI M H, LEE Y J, JUNG S E, et al. High-resolution 3D T2-weighted SPACE sequence with compressed sensing for the prostate gland: diagnostic performance in comparison with conventional T2-weighted images[J]. Abdom Radiol (NY), 2023, 48(3): 1090-1099. DOI: 10.1007/s00261-022-03777-x.
[49]
GONG X, WEN D, WEI H, et al. Comparison of compressed sensing-sensitivity encoding (CS-SENSE) accelerated 3D T2W TSE sequence versus conventional 3D and 2D T2W TSE sequences in rectal cancer: a prospective study[J]. Abdom Radiol (NY), 2022, 47(11): 3660-3670. DOI: 10.1007/s00261-022-03636-9.
[50]
LIU H, DENG D, ZENG W, et al. AI-assisted compressed sensing and parallel imaging sequences for MRI of patients with nasopharyngeal carcinoma: comparison of their capabilities in terms of examination time and image quality[J]. Eur Radiol, 2023, 33(11): 7686-7696. DOI: 10.1007/s00330-023-09742-6.
[51]
YANG F, PAN X, ZHU K, et al. Accelerated 3D high-resolution T2-weighted breast MRI with deep learning constrained compressed sensing, comparison with conventional T2-weighted sequence on 3.0 T[J/OL]. Eur J Radiol, 2022, 156: 110562 [2023-08-30]. https://pubmed.ncbi.nlm.nih.gov/36270194/. DOI: 10.1016/j.ejrad.2022.110562.

PREV Application progress of MRI in the diagnosis and treatment of multiple myeloma
NEXT MRI quantitative analysis technology: An important tool for the precise diagnosis and treatment of breast cancer
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn