Share:
Share this content in WeChat
X
Special Focus
MRI quantitative analysis technology: An important tool for the precise diagnosis and treatment of breast cancer
LIN Luyi  GU Yajia 

Cite this article as: LIN L Y, GU Y J. MRI quantitative analysis technology: An important tool for the precise diagnosis and treatment of breast cancer[J]. Chin J Magn Reson Imaging, 2024, 15(1): 1-5, 27. DOI:10.12015/issn.1674-8034.2024.01.001.


[Abstract] Breast cancer is a serious threat to women's health and quality of life. MRI is an important tool in the diagnosis of breast diseases. With the improvement of software and hardware technology in recent years, more and more quantitative features of MRI have been found, and show greater advantages over non-quantitative features such as morphology. In this article, we briefly reviewed the application of MRI quantitative analysis methods, including conventional MRI sequences, MRI new techniques and methods, and MRI radiomics and deep learning, in the differential diagnosis of benign and malignant breast lesions, the efficacy of adjuvant and neoadjuvant therapy, and prognosis. At the same time, several problems were put forward. The era of accurate diagnosis and treatment of breast cancer has put forward higher requirements for MRI research. It is hoped to inspire researchers to further explore the quantitative features and quantitative analysis methods of MRI in the future, combined with non-quantitative features, to promote the application of MRI in the diagnosis and treatment of breast cancer, promote clinical transformation, and improve the survival time and quality of life for breast cancer patients.
[Keywords] magnetic resonance imaging;dynamic contrast-enhanced;diffusion weighted imaging;synthetic magnetic resonance imaging;compressed sensing ultrafast technology;intravoxel incoherent motion;diffusion tensor imaging;radiomics;machine learning;deep learning

LIN Luyi1, 2, 3   GU Yajia1, 2, 3*  

1 Department of Radiology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai 201321, China

2 Shanghai Key Laboratory of Radiation Oncology, Shanghai 201321, China

3 Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai 201321, China

Corresponding author: GU Y J, E-mail: guyajia@126.com

Conflicts of interest   None.

Received  2023-11-28
Accepted  2024-01-05
DOI: 10.12015/issn.1674-8034.2024.01.001
Cite this article as: LIN L Y, GU Y J. MRI quantitative analysis technology: An important tool for the precise diagnosis and treatment of breast cancer[J]. Chin J Magn Reson Imaging, 2024, 15(1): 1-5, 27. DOI:10.12015/issn.1674-8034.2024.01.001.

[1]
WANG M F, XU W, QIN T. The differential diagnosis of benign and malignant breast tumors with MRI quantitative and semi-quantitative parameters and the correlation analysis with biological indicators of breast cancer[J]. Chin J Magn Reson Imag, 2020, 11(12): 1174-1177. DOI: 10.12015/issn.1674-8034.2020.12.021.
[2]
GRIMM L J, SAHA A, GHATE S V, et al. Relationship between background parenchymal enhancement on high-risk screening MRI and future breast cancer risk[J]. Acad Radiol, 2019, 26(1): 69-75. DOI: 10.1016/j.acra.2018.03.013.
[3]
TELEGRAFO M, RELLA L, STABILE IANORA A A, et al. Breast MRI background parenchymal enhancement (BPE) correlates with the risk of breast cancer[J]. Magn Reson Imaging, 2016, 34(2): 173-176. DOI: 10.1016/j.mri.2015.10.014.
[4]
ARASU V A, MIGLIORETTI D L, SPRAGUE B L, et al. Population-based assessment of the association between magnetic resonance imaging background parenchymal enhancement and future primary breast cancer risk[J]. J Clin Oncol, 2019, 37(12): 954-963. DOI: 10.1200/JCO.18.00378.
[5]
LIAO G J, HENZE BANCROFT L C, STRIGEL R M, et al. Background parenchymal enhancement on breast MRI: a comprehensive review[J]. J Magn Reson Imaging, 2020, 51(1): 43-61. DOI: 10.1002/jmri.26762.
[6]
ZHANG R, YANG X P. Research progress of background parenchymal enhancement in breast magnetic resonance imaging[J]. Chin J Magn Reson Imag, 2021, 12(3): 102-104, 108. DOI: 10.12015/issn.1674-8034.2021.03.025.
[7]
LEE S H, JANG M J, YOEN H, et al. Background parenchymal enhancement at postoperative surveillance breast MRI: association with future second breast cancer risk[J]. Radiology, 2023, 306(1): 90-99. DOI: 10.1148/radiol.220440.
[8]
YOU C, GU Y J, PENG W, et al. Decreased background parenchymal enhancement of the contralateral breast after two cycles of neoadjuvant chemotherapy is associated with tumor response in HER2-positive breast cancer[J]. Acta Radiol, 2018, 59(7): 806-812. DOI: 10.1177/0284185117738560.
[9]
YOU C, PENG W J, ZHI W X, et al. Association between background parenchymal enhancement and pathologic complete remission throughout the neoadjuvant chemotherapy in breast cancer patients[J]. Transl Oncol, 2017, 10(5): 786-792. DOI: 10.1016/j.tranon.2017.07.005.
[10]
GOODBURN R, KOUSI E, SANDERS C, et al. Quantitative background parenchymal enhancement and fibro-glandular density at breast MRI: association with BRCA status[J]. Eur Radiol, 2023, 33(9): 6204-6212. DOI: 10.1007/s00330-023-09592-2.
[11]
WATT G P, THAKRAN S, SUNG J S, et al. Association of breast cancer odds with background parenchymal enhancement quantified using a fully automated method at MRI: the IMAGINE study[J/OL]. Radiology, 2023, 308(3): e230367 [2023-11-27]. https://pubmed.ncbi.nlm.nih.gov/37750771/. DOI: 10.1148/radiol.230367.
[12]
PARTRIDGE S C, ZHANG Z, NEWITT D C, et al. Diffusion-weighted MRI findings predict pathologic response in neoadjuvant treatment of breast cancer: the ACRIN 6698 multicenter trial[J]. Radiology, 2018, 289(3): 618-627. DOI: 10.1148/radiol.2018180273.
[13]
YUAN L, LI J J, LI C Q, et al. Diffusion-weighted MR imaging of locally advanced breast carcinoma: the optimal time window of predicting the early response to neoadjuvant chemotherapy[J/OL]. Cancer Imaging, 2018, 18(1): 38 [2023-11-27]. https://pubmed.ncbi.nlm.nih.gov/30373679/. DOI: 10.1186/s40644-018-0173-5.
[14]
MINARIKOVA L, BOGNER W, PINKER K, et al. Investigating the prediction value of multiparametric magnetic resonance imaging at 3T in response to neoadjuvant chemotherapy in breast cancer[J]. Eur Radiol, 2017, 27(5): 1901-1911. DOI: 10.1007/s00330-016-4565-2.
[15]
FUJIMOTO H, KAZAMA T, NAGASHIMA T, et al. Diffusion-weighted imaging reflects pathological therapeutic response and relapse in breast cancer[J]. Breast Cancer, 2014, 21(6): 724-731. DOI: 10.1007/s12282-013-0449-3.
[16]
HOTTAT N A, BADR D A, LECOMTE S, et al. Value of diffusion-weighted MRI in predicting early response to neoadjuvant chemotherapy of breast cancer: comparison between ROI-ADC and whole-lesion-ADC measurements[J]. Eur Radiol, 2022, 32(6): 4067-4078. DOI: 10.1007/s00330-021-08462-z.
[17]
BALTZER P, MANN R M, IIMA M, et al. Diffusion-weighted imaging of the breast-a consensus and mission statement from the EUSOBI International Breast Diffusion-Weighted Imaging working group[J]. Eur Radiol, 2020, 30(3): 1436-1450. DOI: 10.1007/s00330-019-06510-3.
[18]
YU X Y, ZHOU Z P, TONG Q Y, et al. Application value of synthetic MRI in the differential diagnosis of denign and malignant breast lesions and prognosis lymph node metastasis of breast cancer[J]. J Clin Radiol, 2023, 42(2): 244-251. DOI: 10.13437/j.cnki.jcr.2023.02.014.
[19]
LI Q, HUANG Y, YANG M, et al. The histogram features of quantitative parameters from synthetic MRI in predicting the expression of human epithelial growth factor receptor 2 in breast invasive ductual carcinoma[J]. Chin J Radiol, 2021, 55(12): 1294-1300. DOI: 10.3760/cma.j.cn112149-20210620-00584.
[20]
MENG T B, HE N, HE H Q, et al. The diagnostic performance of quantitative mapping in breast cancer patients: a preliminary study using synthetic MRI[J/OL]. Cancer Imaging, 2020, 20(1): 88 [2023-11-27]. https://pubmed.ncbi.nlm.nih.gov/33317609/. DOI: 10.1186/s40644-020-00365-4.
[21]
LI X J, FAN Z C, JIANG H N, et al. Synthetic MRI in breast cancer: differentiating benign from malignant lesions and predicting immunohistochemical expression status[J/OL]. Sci Rep, 2023, 13(1): 17978 [2023-11-27]. https://pubmed.ncbi.nlm.nih.gov/37864025/. DOI: 10.1038/s41598-023-45079-2.
[22]
MANN R M, HOOLEY R, BARR R G, et al. Novel approaches to screening for breast cancer[J]. Radiology, 2020, 297(2): 266-285. DOI: 10.1148/radiol.2020200172.
[23]
ABE H, MORI N, TSUCHIYA K, et al. Kinetic analysis of benign and malignant breast lesions with ultrafast dynamic contrast-enhanced MRI: comparison with standard kinetic assessment[J]. AJR Am J Roentgenol, 2016, 207(5): 1159-1166. DOI: 10.2214/AJR.15.15957.
[24]
VAN ZELST J C M, VREEMANN S, WITT H J, et al. Multireader study on the diagnostic accuracy of ultrafast breast magnetic resonance imaging for breast cancer screening[J]. Invest Radiol, 2018, 53(10): 579-586. DOI: 10.1097/RLI.0000000000000494.
[25]
XIE T W, JIANG T T, ZHAO Q F, et al. Model-free and model-based parameters derived from CAIPIRINHA-dixon-TWIST-VIBE DCE-MRI: associations with prognostic factors and molecular subtypes of invasive ductal breast cancer[J]. J Magn Reson Imaging, 2023, 58(1): 81-92. DOI: 10.1002/jmri.28533.
[26]
IIMA M, HONDA M, SIGMUND E E, et al. Diffusion MRI of the breast: current status and future directions[J]. J Magn Reson Imaging, 2020, 52(1): 70-90. DOI: 10.1002/jmri.26908.
[27]
SIGMUND E E, CHO G Y, KIM S, et al. Intravoxel incoherent motion imaging of tumor microenvironment in locally advanced breast cancer[J]. Magn Reson Med, 2011, 65(5): 1437-1447. DOI: 10.1002/mrm.22740.
[28]
SI L F, LIU X J, YANG K Y, et al. The value of IVIM-DWI and DTI in the diagnosis of invasive breast carcinoma of no special type[J]. J Pract Radiol, 2018, 34(12): 1874-1877. DOI: 10.3969/j.issn.1002-1671.2018.12.014.
[29]
LIU C L, LIANG C H, LIU Z Y, et al. Intravoxel incoherent motion (IVIM) in evaluation of breast lesions: comparison with conventional DWI[J/OL]. Eur J Radiol, 2013, 82(12): e782-e789 [2023-11-27]. https://pubmed.ncbi.nlm.nih.gov/24034833/. DOI: 10.1016/j.ejrad.2013.08.006.
[30]
DIJKSTRA H, DORRIUS M D, WIELEMA M, et al. Semi-automated quantitative intravoxel incoherent motion analysis and its implementation in breast diffusion-weighted imaging[J]. J Magn Reson Imaging, 2016, 43(5): 1122-1131. DOI: 10.1002/jmri.25086.
[31]
MÜRTZ P, TSESARSKIY M, SPRINKART A M, et al. Simplified intravoxel incoherent motion DWI for differentiating malignant from benign breast lesions[J/OL]. Eur Radiol Exp, 2022, 6(1): 48 [2023-11-27]. https://pubmed.ncbi.nlm.nih.gov/36171532/. DOI: 10.1186/s41747-022-00298-6.
[32]
YOU C, LI J W, ZHI W X, et al. The volumetric-tumour histogram-based analysis of intravoxel incoherent motion and non-Gaussian diffusion MRI: association with prognostic factors in HER2-positive breast cancer[J/OL]. J Transl Med, 2019, 17(1): 182 [2023-11-27]. https://pubmed.ncbi.nlm.nih.gov/31262334/. DOI: 10.1186/s12967-019-1911-6.
[33]
USLU H, ÖNAL T, TOSUN M, et al. Intravoxel incoherent motion magnetic resonance imaging for breast cancer: a comparison with molecular subtypes and histological grades[J]. Magn Reson Imaging, 2021, 78: 35-41. DOI: 10.1016/j.mri.2021.02.005.
[34]
KIM Y, KIM S H, LEE H W, et al. Intravoxel incoherent motion diffusion-weighted MRI for predicting response to neoadjuvant chemotherapy in breast cancer[J/OL]. Magn Reson Imaging, 2018, 48: 27-33 [2023-11-27]. https://pubmed.ncbi.nlm.nih.gov/29278762/. DOI: 10.1016/j.mri.2017.12.018.
[35]
TSOUGOS I, SVOLOS P, KOUSI E, et al. The contribution of diffusion tensor imaging and magnetic resonance spectroscopy for the differentiation of breast lesions at 3T[J]. Acta Radiol, 2014, 55(1): 14-23. DOI: 10.1177/0284185113492152.
[36]
BALTZER P A, SCHÄFER A, DIETZEL M, et al. Diffusion tensor magnetic resonance imaging of the breast: a pilot study[J]. Eur Radiol, 2011, 21(1): 1-10. DOI: 10.1007/s00330-010-1901-9.
[37]
PARTRIDGE S C, ZIADLOO A, MURTHY R, et al. Diffusion tensor MRI: preliminary anisotropy measures and mapping of breast tumors[J]. J Magn Reson Imaging, 2010, 31(2): 339-347. DOI: 10.1002/jmri.22045.
[38]
WANG Y, WEN S B, ZHOU H Y, et al. Application progress of MRI radiomics in predicting the prognosis of breast cancer[J]. Chin J Magn Reson Imag, 2023, 14(9): 136-140. DOI: 10.12015/issn.1674-8034.2023.09.025.
[39]
YOU C, ZHOU J Y, TAO K, et al. Evaluation of neoadjuvant therapy for breast cancer based on radiomics[J]. Chin J Radiol, 2021, 55(11): 1226-1229. DOI: 10.3760/cma.j.cn112149-20210912-00846.
[40]
WITOWSKI J, HEACOCK L, REIG B, et al. Improving breast cancer diagnostics with deep learning for MRI[J/OL]. Sci Transl Med, 2022, 14(664): eabo4802 [2023-11-27]. https://pubmed.ncbi.nlm.nih.gov/36170446/. DOI: 10.1126/scitranslmed.abo4802.
[41]
SHI Z W, HUANG X M, CHENG Z L, et al. MRI-based quantification of intratumoral heterogeneity for predicting treatment response to neoadjuvant chemotherapy in breast cancer[J/OL]. Radiology, 2023, 308(1): e222830 [2023-11-27]. https://pubmed.ncbi.nlm.nih.gov/37432083/. DOI: 10.1148/radiol.222830.
[42]
LI Y Z, SUI Y, JIN H R, et al. Study on the construction of A model for predicting tumor recurrence after breast-conserving surgery for triple-negative breast cancer based on MRI imaging and its application value[J]. Chin J CT MRI, 2023, 21(3): 103-106. DOI: 10.3969/j.issn.1672-5131.2023.03.037.
[43]
CHEN L, JIANG Y Z, WU S Y, et al. Famitinib with camrelizumab and nab-paclitaxel for advanced immunomodulatory triple-negative breast cancer (FUTURE-C-plus): an open-label, single-arm, phase II trial[J]. Clin Cancer Res, 2022, 28(13): 2807-2817. DOI: 10.1158/1078-0432.CCR-21-4313.
[44]
JIANG Y Z, LIU Y, XIAO Y, et al. Molecular subtyping and genomic profiling expand precision medicine in refractory metastatic triple-negative breast cancer: the FUTURE trial[J]. Cell Res, 2021, 31(2): 178-186. DOI: 10.1038/s41422-020-0375-9.
[45]
JIANG Y Z, MA D, SUO C, et al. Genomic and transcriptomic landscape of triple-negative breast cancers: subtypes and treatment strategies[J/OL]. Cancer Cell, 2019, 35(3): 428-440.e5 [2023-11-27]. https://pubmed.ncbi.nlm.nih.gov/30853353/. DOI: 10.1016/j.ccell.2019.02.001.
[46]
JIANG L, YOU C, XIAO Y, et al. Radiogenomic analysis reveals tumor heterogeneity of triple-negative breast cancer[J/OL]. Cell Rep Med, 2022, 3(7): 100694 [2023-11-27]. https://pubmed.ncbi.nlm.nih.gov/35858585/. DOI: 10.1016/j.xcrm.2022.100694.
[47]
SU G H, XIAO Y, JIANG L, et al. Radiomics features for assessing tumor-infiltrating lymphocytes correlate with molecular traits of triple-negative breast cancer[J/OL]. J Transl Med, 2022, 20(1): 471 [2023-11-27]. https://pubmed.ncbi.nlm.nih.gov/36243806/. DOI: 10.1186/s12967-022-03688-x.
[48]
SU G H, XIAO Y, YOU C, et al. Radiogenomic-based multiomic analysis reveals imaging intratumor heterogeneity phenotypes and therapeutic targets[J/OL]. Sci Adv, 2023, 9(40): eadf0837 [2023-11-27]. https://pubmed.ncbi.nlm.nih.gov/37801493/. DOI: 10.1126/sciadv.adf0837.

PREV Clinical advancements in the application of compressed sensing techniques in magnetic resonance imaging
NEXT Diagnostic value of MRI features combined with clinicopathologic features in predicting the expression of human epidermal growth factor receptor 2 in breast cancer
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn