Share:
Share this content in WeChat
X
Special Focus
Constructing a MR-clinicopathological based nomogram to predict the shrinkage patterns of neoadjuvant therapy in breast cancer
LUO Yao  CAO Kun  LI Xiaoting  DENG Xubo  SUN Yingshi 

Cite this article as: LUO Y, CAO K, LI X T, et al. Constructing a MR-clinicopathological based nomogram to predict the shrinkage patterns of neoadjuvant therapy in breast cancer[J]. Chin J Magn Reson Imaging, 2024, 15(1): 35-42. DOI:10.12015/issn.1674-8034.2024.01.006.


[Abstract] Objective To select the baseline MRI features and clinicopathological factors that relate to tumor shrinkage patterns of breast cancers after neoadjuvant therapy (NAT), and construct a predicting nomogram.Materials and Methods A total of 272 consecutive patients with breast invasive ductal carcinoma who underwent NAT and surgical resection in our hospital were retrospectively analyzed. The patients were randomly divided into training group (190 cases) and validation group (82 cases). According to the morphological changes of tumor on MRI before and after NAT, the shrinkage patterns were divided into type I shrinkage (complete response, concentric shrinkage) and type Ⅱ shrinkage (non-concentric shrinkage, stable and progressing disease). Baseline MRI features (size, enhancement mode, semi-quantitative parameters of enhancement, etc.) together with clinical and pathological information (degree of differentiation, immunohistochemical molecular type, etc.) were collected. Univariate and multivariate logistic regression analysis were used to select effective factors and to establish the predictive models. The area under the curve (AUC) was used to evaluate the diagnostic performance of the model and select the best one to construct a nomogram.Results Type I and Ⅱ shrinkage pattern were seen in 174 (64.0%) and 98 (36.0%) patients respectively. Baseline MRI enhancement mode and hormone receptor (HR) were independently correlated with shrinkage types with AUCs of 0.844 [95% confidence intervals (CI): 0.784-0.892] and 0.593 (95% CI: 0.519-0.663) respectively in predicting type Ⅱ shrinkage. A combined predictive model was established with AUC of 0.890 (95% CI: 0.837-0.931), higher than that of any single parameter (P<0.05) with accuracy of 85.8%, and a nomogram was constructed. The AUC and accuracy for predicting type Ⅱ shrinkage in the validation group was 0.871 (95% CI: 0.779-0.935) and 82.9%.Conclusions Non single mass enhancement on MRI and positive HR are two independent risk factors for type Ⅱ shrinkage after NAT in breast cancer. A simple analysis of tumor enhancement mode and HR can provide a reasonable evaluation of the feasibility and effect of breast conservation after NAT.
[Keywords] breast cancer;neoadjuvant therapy;tumor shrinkage pattern;nomogram;magnetic resonance imaging

LUO Yao   CAO Kun   LI Xiaoting   DENG Xubo   SUN Yingshi*  

Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Radiology, Peking University Cancer Hospital & Institute, Beijing 100142, China

Corresponding author: SUN Y S, E-mail: sys27@163.com

Conflicts of interest   None.

Received  2023-09-27
Accepted  2024-01-05
DOI: 10.12015/issn.1674-8034.2024.01.006
Cite this article as: LUO Y, CAO K, LI X T, et al. Constructing a MR-clinicopathological based nomogram to predict the shrinkage patterns of neoadjuvant therapy in breast cancer[J]. Chin J Magn Reson Imaging, 2024, 15(1): 35-42. DOI:10.12015/issn.1674-8034.2024.01.006.

[1]
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
[2]
SHAO Z M, WU H, JIANG Z F, et al. Expert consensus on neoadjuvant treatment of breast cancer in China(2021 edition)[J]. China Oncol, 2022, 32(1): 80-89. DOI: 10.19401/j.cnki.1007-3639.2022.01.011.
[3]
TAMIRISA N, HUNT K K. Neoadjuvant chemotherapy, endocrine therapy, and targeted therapy for breast cancer: ASCO guideline[J]. Ann Surg Oncol, 2022, 29(3): 1489-1492. DOI: 10.1245/s10434-021-11223-3.
[4]
DUBSKY P, PINKER K, CARDOSO F, et al. Breast conservation and axillary management after primary systemic therapy in patients with early-stage breast cancer: the Lucerne toolbox [J/OL]. Lancet Oncol, 2021, 22(1): e18-e28 [2023-10-06]. https://www.ncbi.nlm.nih.gov/pubmed/33387500/. DOI: 10.1016/S1470-2045(20)30580-5.
[5]
ATASEVEN B, LEDERER B, BLOHMER J U, et al. Impact of multifocal or multicentric disease on surgery and locoregional, distant and overall survival of 6, 134 breast cancer patients treated with neoadjuvant chemotherapy[J]. Ann Surg Oncol, 2015, 22(4): 1118-1127. DOI: 10.1245/s10434-014-4122-7.
[6]
ZHUANG X, CHEN C, LIU Z, et al. Multiparametric MRI-based radiomics analysis for the prediction of breast tumor regression patterns after neoadjuvant chemotherapy[J/OL]. Transl Oncol, 2020, 13(11): 100831 [2023-10-6]. https://www.ncbi.nlm.nih.gov/pubmed/32759037/. DOI: 10.1016/j.tranon.2020.100831.
[7]
Huang Y, Chen W, Zhang X, et al. Prediction of Tumor Shrinkage Pattern to Neoadjuvant Chemotherapy Using a Multiparametric MRI-Based Machine Learning Model in Patients With Breast Cancer[J/OL]. Front Bioeng Biotechnol, 2021, 9:662749 [2023-10-06]. https://www.ncbi.nlm.nih.gov/pubmed/34295877/. DOI: 10.3389/fbioe.2021.662749.
[8]
LIU C, CHEN X B, HUANG X M, et al. MRI-based radiomics for prediction of tumor regression pattern to neoadjuvant chemotherapy in breast cancer[J]. Chin J Magn Reson Imag, 2023, 14(3): 28-35. DOI: 10.12015/issn.1674-8034.2023.03.006.
[9]
SATAKE H, ISHIGAKI S, ITO R, et al. Radiomics in breast MRI: current progress toward clinical application in the era of artificial intelligence[J]. Radiol Med, 2022, 127(1): 39-56. DOI: 10.1007/s11547-021-01423-y.
[10]
YE D M, WANG H T, YU T. The Application of Radiomics in Breast MRI: A Review[J/OL]. Technol Cancer Res Treat, 2020, 19: 1533033820916191 [2023-10-6]. https://pubmed.ncbi.nlm.nih.gov/32347167/. DOI: 10.1177/1533033820916191.
[11]
PARK J E, KIM D, KIM H S, et al. Quality of science and reporting of radiomics in oncologic studies: room for improvement according to radiomics quality score and TRIPOD statement[J]. Eur Radiol, 2020, 30(1): 523-536. DOI: 10.1007/s00330-019-06360-z.
[12]
XU M, MA J, GE C Y, et al. Value of different tumor shrinking patterns on MRI in evaluating the efficacy of neoadjuvant chemotherapy for breast cancer[J]. Radiol Pract, 2020, 35(4): 497-503. DOI: 10.13609/j.cnki.1000-0313.2020.04.019.
[13]
HU Y, JIN C L, WANG X, et al. Correlation and clinical significance between the breast cancer MRI schedule of reinforcement and the pattern of tumorshrinkage after neo-adjuvant chemotherapy[J]. Chin J Clin Oncol, 2014, 41(22): 1446-1449. DOI: 10.3969/j.issn.1000-8179.20141344.
[14]
LOO C E, STRAVER M E, RODENHUIS S, et al. Magnetic resonance imaging response monitoring of breast cancer during neoadjuvant chemotherapy: relevance of breast cancer subtype[J]. J Clin Oncol, 2011, 29(6): 660-666. DOI: 10.1200/JCO.2010.31.1258.
[15]
BALLESIO L, GIGLI S, PASTENA F D, et al. Magnetic resonance imaging tumor regression shrinkage patterns after neoadjuvant chemotherapy in patients with locally advanced breast cancer: Correlation with tumor biological subtypes and pathological response after therapy[J/OL]. Tumor Biol, 2017, 39(3): 1010428317694540 [2023-10-06]. https://pubmed.ncbi.nlm.nih.gov/28347225/. DOI: 10.1177/1010428317694540.
[16]
KIM S Y, CHO N, CHOI Y, et al. Factors affecting pathologic complete response following neoadjuvant chemotherapy in breast cancer: development and validation of a predictive nomogram[J]. Radiology, 2021, 299(2): 290-300. DOI: 10.1148/radiol.2021203871.
[17]
CHEN X G, CHEN X F, YANG J D, et al. Combining dynamic contrast-enhanced magnetic resonance imaging and apparent diffusion coefficient maps for a radiomics nomogram to predict pathological complete response to neoadjuvant chemotherapy in breast cancer patients[J]. J Comput Assist Tomogr, 2020, 44(2): 275-283. DOI: 10.1097/RCT.0000000000000978.
[18]
PETER S C, WENKEL E, WEILAND E, et al. Combination of an ultrafast TWIST-VIBE Dixon sequence protocol and diffusion-weighted imaging into an accurate easily applicable classification tool for masses in breast MRI[J]. Eur Radiol, 2020, 30(5): 2761-2772. DOI: 10.1007/s00330-019-06608-8.
[19]
BOSSUYT V, PROVENZANO E, SYMMANS W F, et al. Recommendations for standardized pathological characterization of residual disease for neoadjuvant clinical trials of breast cancer by the BIG-NABCG collaboration[J]. Ann Oncol, 2015, 26(7): 1280-1291. DOI: 10.1093/annonc/mdv161.
[20]
CHITALIA R D, KONTOS D. Role of texture analysis in breast MRI as a cancer biomarker: a review[J]. J Magn Reson Imaging, 2019, 49(4): 927-938. DOI: 10.1002/jmri.26556.
[21]
GILLIES R J, KINAHAN P E, HRICAK H. Radiomics: images are more than pictures, they are data[J]. Radiology, 2016, 278(2): 563-577. DOI: 10.1148/radiol.2015151169.
[22]
DEBBI K, HABERT P, GROB A, et al. Radiomics model to classify mammary masses using breast DCE-MRI compared to the BI-RADS classification performance[J/OL].Insights Imaging, 2023, 14(1): 64 [2023-10-06]. https://www.ncbi.nlm.nih.gov/pubmed/37052738/. DOI: 10.1186/s13244-023-01404-x
[23]
WANG Y, WEN S B, ZHOU H Y, et al. Application progress of MRI radiomics in predicting the prognosis of breast cancer[J]. Chin J Magn Reson Imag, 2023, 14(9): 136-140. DOI: 10.12015/issn.1674-8034.2023.09.025.
[24]
LEE S H, PARK H, KO E S. Radiomics in breast imaging from techniques to clinical applications: a review[J]. Korean J Radiol, 2020, 21(7): 779-792. DOI: 10.3348/kjr.2019.0855.
[25]
SCAPICCHIO C, GABELLONI M, BARUCCI A, et al. A deep look into radiomics[J]. Radiol Med, 2021, 126(10): 1296-1311. DOI: 10.1007/s11547-021-01389-x.
[26]
XU C J, ZHANG Z P, QIU H, et al. Effect of molecular typing on breast tumor regression mode after neoadjuvant chemo-therapy[J]. Chin J Clin Oncol, 2018, 45(17): 894-897. DOI: 10.3969/j.issn.1000-8179.2018.17.351.
[27]
LI M M, LIU H, XU B, et al. Analysis of tumor regression models in different molecular subtypes of breast cancer on the base of MRI[J]. Chin J Cancer Prev Treat, 2016, 23(15): 1016-1020. DOI: 10.16073/j.cnki.cjcpt.2016.15.009.
[28]
BARCHIESI G, MAZZOTTA M, KRASNIQI E, et al. Neoadjuvant endocrine therapy in breast cancer: current knowledge and future perspectives[J/OL]. Int J Mol Sci, 2020, 21(10): 3528 [2023-09-26]. https://pubmed.ncbi.nlm.nih.gov/32429381/. DOI: 10.3390/ijms21103528.
[29]
HAQUE W, VERMA V, HATCH S, et al. Response rates and pathologic complete response by breast cancer molecular subtype following neoadjuvant chemotherapy[J]. Breast Cancer Res Treat, 2018, 170(3): 559-567. DOI: 10.1007/s10549-018-4801-3.
[30]
SROUR M K, JOHNSON J E, CHUNG A, et al. Predictors of complete response to neoadjuvant chemotherapy in Breast Cancer: a National Cancer Database (NCDB) analysis[J/OL]. Ann Breast Cancer. 2020; 3(1): 1013 [2023-09-26]. https://www.semanticscholar.org/paper/Predictors-of-complete-response-to-neoadjuvant-in-A-Srour-Johnson/0646eec0ba785639d0195ba7644eab0425920a20. DOI: 10.1007/s10549-020-05809-w.
[31]
BOUZÓN A, IGLESIAS Á, ACEA B, et al. Evaluation of MRI accuracy after primary systemic therapy in breast cancer patients considering tumor biology: optimizing the surgical planning[J]. Radiol Oncol, 2019, 53(2): 171-177. DOI: 10.2478/raon-2019-0023.
[32]
YANG L, HE J X, ZHANG C X, et al. The pattern of tumor regression after neoadjuvant chemotherapy for HER-2 positive in-vasive breast cancer and its influencing factors[J]. J Mod Oncol, 2022, 30(2): 228-231. DOI: 10.3969/j.issn.1672-4992.2022.02.010.
[33]
YANG T, ZHANG Z P, SUN X Y, et al. Shrinkage mode of the primary breast tumor after neoadjuvant chemotherapy analyzed with part-mount sub-serial sectioning and three-dimensional reconstruction technique[J]. Chin J Oncol, 2016, 38(4): 270-276. DOI: 10.3760/cma.j.issn.0253-3766.2016.04.006.
[34]
TAOUREL P, PAGES E, MILLET I, et al. Magnetic resonance imaging in breast cancer management in the context of neo-adjuvant chemotherapy[J/OL]. Crit Rev Oncol Hematol, 2018, 132:51-65 [2023-10-6]. https://pubmed.ncbi.nlm.nih.gov/30447927/. DOI: 10.1016/j.critrevonc.2018.09.012.

PREV Value of radiomics model based on spatiotemporal heterogeneity of MRI to predict pathological complete response in triple-negative breast cancer
NEXT Correlation analysis of MRI features of breast and feasibility of breast conserving surgery
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn