Share:
Share this content in WeChat
X
Special Focus
Differentiation of benign and malignant breast lesions using DWI with a fractional-order calculus model based on SMS technique
WANG Fei  SUN Yinan  ZHANG Baoti  CHEN Ming  YANG Qing  CHEN Xi  LIU Mengxiao  ZHU Juan 

Cite this article as: WANG F, SUN Y N, ZHANG B T, et al. Differentiation of benign and malignant breast lesions using DWI with a fractional-order calculus model based on SMS technique[J]. Chin J Magn Reson Imaging, 2024, 15(1): 48-54. DOI:10.12015/issn.1674-8034.2024.01.008.


[Abstract] Objective To investigate the application value of fractional-order calculus (FROC) model diffusion weighted imaging (DWI) combined with simultaneous multi-slice (SMS) acquisition technology in the differentiation between benign and malignant breast lesions.Materials and Methods A total of 124 patients (with 141 lesions) who underwent breast MRI scan at our hospital from January 2021 to December 2022 were retrospectively analyzed. All patients underwent DWI scanning with two sets of multiple b values (14 b values, the highest b value was 3 000 s/mm2) using a 3.0 T MRI system. One group underwent conventional single-shot echo planar imaging (SSEPI-DWI), while the other group underwent SMS-SSEPI-DWI. Independent sample t test or Mann-Whitney U test was used to compare the image quality scores, FROC model parameters (D, β, μ) and apparent diffusion coefficient (ADC) value between benign and malignant groups. The receiver operating characteristic curve was used to evaluate the diagnostic efficacy of each parameter. Bland-Altman plots were used to assess the agreement between the two DWI-derived parameters.Results The ADC, D and β values of malignant breast lesions were significantly lower than those of benign breast lesions (P<0.05), while the μ value of malignant breast lesions was notably higher than that of benign breast lesions (P<0.05). Among the SSEP-DWI and SMS-SSEP-DWI sequences, the D value had the largest area under the curve, the β value demonstrated the highest diagnostic sensitivity, and the D value displayed the highest specificity. Bland-Altman plot indicated unbiased and substantial agreement between the corresponding parameter values derived from the two DWI sequences were unbiased and had good agreement.Conclusions The FROC model based on SMS-SSEPI DWI can provide high-quality images and lesion characteristic parameter values with shorten scan time. Compared with SSEPI-DWI. It has a comparable diagnostic performance in distinguishing between benign and malignant breast lesions.Particularly. The D and β value show better diagnostic performance.
[Keywords] breast neoplasms;fractional-order calculus model;simultaneous multi-slice diffusion weighted imaging;apparent diffusion coefficient;magnetic resonance imaging

WANG Fei1   SUN Yinan1   ZHANG Baoti1   CHEN Ming1   YANG Qing1   CHEN Xi2   LIU Mengxiao3   ZHU Juan1*  

1 Department of Medical Imaging, Anqing Municipal Hospital, Anqing 246003, China

2 Department of Thyroid Gland and Breast Surgery, Anqing Municipal Hospital, Anqing 246003, China

3 MR Scientific Marketing, Siemens Healthineers Ltd, Shanghai 200126, China

Corresponding author: ZHU J, E-mail: 55522670@qq.com

Conflicts of interest   None.

Received  2023-08-25
Accepted  2023-12-29
DOI: 10.12015/issn.1674-8034.2024.01.008
Cite this article as: WANG F, SUN Y N, ZHANG B T, et al. Differentiation of benign and malignant breast lesions using DWI with a fractional-order calculus model based on SMS technique[J]. Chin J Magn Reson Imaging, 2024, 15(1): 48-54. DOI:10.12015/issn.1674-8034.2024.01.008.

[1]
XU W J, ZHENG B J, LI H L. Identification of the benignity and malignancy of BI-RADS 4 breast lesions based on a combined quantitative model of dynamic contrast-enhanced MRI and intravoxel incoherent motion[J]. Tomography, 2022, 8(6): 2676-2686. DOI: 10.3390/tomography8060223.
[2]
SALLAM H, LENGA L, SOLBACH C, et al. Correlation of background parenchymal enhancement on breast MRI with breast cancer[J/OL]. Clin Radiol, 2023, 78(9): e654-e659 [2023-06-02]. https://www.clinicalradiologyonline.net/article/S0009-9260(23)00218-0/fulltext. DOI: 10.1016/j.crad.2023.05.006.
[3]
YUAN C R, JIN F, GUO X L, et al. Correlation analysis of breast cancer DWI combined with DCE-MRI imaging features with molecular subtypes and prognostic factors[J/OL]. J Med Syst, 2019, 43(4): 83 [2023-06-02]. https://pubmed.ncbi.nlm.nih.gov/30810823/. DOI: 10.1007/s10916-019-1197-5.
[4]
WANG H J, WANG W W, LÜ S Q, et al. Value of multi-parameter diffusion weighted imaging in the differential diagnosis of benign and malignant TIC type Ⅱ breast lesions[J]. Chin J Magn Reson Imag, 2022, 13(9): 18-24. DOI: 10.12015/issn.1674-8034.2022.09.004.
[5]
ZHOU X J, GAO Q, ABDULLAH O, et al. Studies of anomalous diffusion in the human brain using fractional order calculus[J]. Magn Reson Med, 2010, 63(3): 562-569. DOI: 10.1002/mrm.22285.
[6]
MAGIN R L, ABDULLAH O, BALEANU D, et al. Anomalous diffusion expressed through fractional order differential operators in the Bloch-Torrey equation[J]. J Magn Reson, 2008, 190(2): 255-270. DOI: 10.1016/j.jmr.2007.11.007.
[7]
LIU G Q, LU Y, DAI Y M, et al. Comparison of mono-exponential, bi-exponential, kurtosis, and fractional-order calculus models of diffusion-weighted imaging in characterizing prostate lesions in transition zone[J]. Abdom Radiol, 2021, 46(6): 2740-2750. DOI: 10.1007/s00261-020-02903-x.
[8]
SUI Y, WANG H, LIU G Z, et al. Differentiation of low- and high-grade pediatric brain tumors with high b-value diffusion-weighted MR imaging and a fractional order Calculus model[J]. Radiology, 2015, 277(2): 489-496. DOI: 10.1148/radiol.2015142156.
[9]
SUI Y, XIONG Y, JIANG J, et al. Differentiation of low- and high-grade gliomas using high b-value diffusion imaging with a non-gaussian diffusion model[J]. AJNR Am J Neuroradiol, 2016, 37(9): 1643-1649. DOI: 10.3174/ajnr.A4836.
[10]
ZHANG A N, HU Q M, SONG J C, et al. Value of non-Gaussian diffusion imaging with a fractional order calculus model combined with conventional MRI for differentiating histological types of cervical cancer[J/OL]. Magn Reson Imaging, 2022, 93: 181-188 [2022-08-19]. https://pubmed.ncbi.nlm.nih.gov/35988835/. DOI: 10.1016/j.mri.2022.08.014.
[11]
FENG C, WANG Y C, DAN G Y, et al. Evaluation of a fractional-order calculus diffusion model and bi-parametric VI-RADS for staging and grading bladder urothelial carcinoma[J]. Eur Radiol, 2022, 32(2): 890-900. DOI: 10.1007/s00330-021-08203-2.
[12]
LI Z H, DAN G Y, TAMMANA V, et al. Predicting the aggressiveness of peripheral zone prostate cancer using a fractional order calculus diffusion model[J/OL]. Eur J Radiol, 2021, 143: 109913 [2023-08-18]. https://pubmed.ncbi.nlm.nih.gov/34464907/. DOI: 10.1016/j.ejrad.2021.109913.
[13]
XIE J H, LI C H, CHEN Y D, et al. Potential value of the stretched exponential and fractional order Calculus model in discriminating between hepatocellular carcinoma and intrahepatic cholangiocarcinoma: an animal experiment of orthotopic xenograft nude mice[J/OL]. Curr Med Imaging, 2023 [2023-08-03]. http://www.eurekaselect.com/article/130322. DOI: 10.2174/1573405619666230322123117.
[14]
LI C H, WEN Y, XIE J H, et al. Preoperative prediction of VETC in hepatocellular carcinoma using non-Gaussian diffusion-weighted imaging at high b values: a pilot study[J/OL]. Front Oncol, 2023, 13: 1167209 [2023-08-25]. https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2023.1167209/full. DOI: 10.3389/fonc.2023.1167209.
[15]
CHEN J J, GUO Y X, GUO Y L, et al. Preoperative assessment of microvascular invasion of hepatocellular carcinoma using non-Gaussian diffusion-weighted imaging with a fractional order calculus model: a pilot study[J/OL]. Magn Reson Imaging, 2023, 95: 110-117 [2023-08-25]. https://pubmed.ncbi.nlm.nih.gov/34506910/. DOI: 10.1016/j.mri.2021.09.003.
[16]
SHENG R F, ZHANG Y F, SUN W, et al. Staging chronic hepatitis B related liver fibrosis with a fractional order Calculus diffusion model[J]. Acad Radiol, 2022, 29(7): 951-963. DOI: 10.1016/j.acra.2021.07.005.
[17]
ICKELHAUPT S, STEUDLE F, PAECH D, et al. On a fractional order calculus model in diffusion weighted breast imaging to differentiate between malignant and benign breast lesions detected on X-ray screening mammography[J/OL]. PLoS One,2017, 12(4): e0176077 [2023-04-28]. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0176077. DOI: 10.1371/journal.pone.0176077.
[18]
WANG C H, WANG G Y, ZHANG Y F, et al. Differentiation of benign and malignant breast lesions using diffusion-weighted imaging with a fractional-order calculus model[J/OL]. Eur J Radiol, 2023, 159: 110646 [2023-08-25]. https://pubmed.ncbi.nlm.nih.gov/36577184/. DOI: 10.1016/j.ejrad.2022.110646.
[19]
YOKOTA H, SAKAI K, TAZOE J, et al. Clinical feasibility of simultaneous multi-slice imaging with blipped-CAIPI for diffusion-weighted imaging and diffusion-tensor imaging of the brain[J]. Acta Radiol, 2017, 58(12): 1500-1510. DOI: 10.1177/0284185117692171.
[20]
YE Z, YAO S, YANG T, et al. Abdominal diffusion-weighted MRI with simultaneous multi-slice acquisition: agreement and reproducibility of apparent diffusion coefficients measurements[J/OL]. J Magn Reson Imaging, 2023 [2023-08-25]. https://pubmed.ncbi.nlm.nih.gov/37334872/. DOI: 10.1002/jmri.28876.
[21]
OHLMEYER S, LAUN F B, PALM T, et al. Simultaneous multislice echo planar imaging for accelerated diffusion-weighted imaging of malignant and benign breast lesions[J]. Invest Radiol, 2019, 54(8): 524-530. DOI: 10.1097/RLI.0000000000000560.
[22]
KRUEGER P C, KRÄMER M, BENKERT T, et al. Whole-body diffusion magnetic resonance imaging with simultaneous multi-slice excitation in children and adolescents[J]. Pediatr Radiol, 2023, 53(7): 1485-1496. DOI: 10.1007/s00247-023-05622-9.
[23]
CHEN W, SUN H G, ZHANG X D, et al. Anomalous diffusion modeling by fractal and fractional derivatives[J]. Comput Math Appl, 2010, 59(5): 1754-1758. DOI: 10.1016/j.camwa.2009.08.020.
[24]
LI X, ZHU H, SUN K, et al. Whole-tumor apparent diffusion coefficient (ADC) analyses of breast lesions based on simultaneous multi-slice readout-segmented echo-planar diffusion-weighted imaging[J/OL]. Magn Reson Imaging, 2022, 94: 119-126 [2023-08-24]. https://pubmed.ncbi.nlm.nih.gov/36191856/. DOI: 10.1016/j.mri.2022.09.008.
[25]
SONG M N, DONG L, HE H, et al. Value of syMRI and DWI quantitative parameters measured using different regions of interest method in differentiating benign and malignant breast lesions[J]. Chin J Magn Reson Imag, 2022, 13(6): 17-22, 27. DOI: 10.12015/issn.1674-8034.2022.06.004.
[26]
YANG Z L, LI Y, ZHAN C A, et al. Evaluation of suspicious breast lesions with diffusion kurtosis MR imaging and connection with prognostic factors[J/OL]. Eur J Radiol, 2021, 145: 110014 [2023-08-24]. https://pubmed.ncbi.nlm.nih.gov/34749223/. DOI: 10.1016/j.ejrad.2021.110014.
[27]
ALMUTLAQ Z M, WILSON D J, BACON S E, et al. Evaluation of monoexponential, stretched-exponential and intravoxel incoherent motion MRI diffusion models in early response monitoring to neoadjuvant chemotherapy in patients with breast cancer-a preliminary study[J]. J Magn Reson Imaging, 2022, 56(4): 1079-1088. DOI: 10.1002/jmri.28113.
[28]
SOMEYA Y, IIMA M, IMAI H, et al. Investigation of breast cancer microstructure and microvasculature from time-dependent DWI and CEST in correlation with histological biomarkers[J/OL]. Sci Rep, 2022, 12(1): 6523 [2023-08-20]. https://www.nature.com/articles/s41598-022-10081-7. DOI: 10.1038/s41598-022-10081-7.
[29]
CHANG H, WANG D W, LI Y T, et al. Evaluation of breast cancer malignancy, prognostic factors and molecular subtypes using a continuous-time random-walk MR diffusion model[J/OL]. Eur J Radiol, 2023, 166: 111003 [2023-08-22]. https://pubmed.ncbi.nlm.nih.gov/37506477/. DOI: 10.1016/j.ejrad.2023.111003.
[30]
DU M, ZOU D, GAO P, et al. Evaluation of a continuous-time random-walk diffusion model for the differentiation of malignant and benign breast lesions and its association with Ki-67 expression[J/OL]. NMR Biomed, 2023, 36(8): e4920 [2023-08-22]. https://pubmed.ncbi.nlm.nih.gov/36912198/. DOI: 10.1002/nbm.4920.
[31]
LUO Y, JIANG H, MENG N, et al. A comparison study of monoexponential and fractional order calculus diffusion models and 18F-FDG PET in differentiating benign and malignant solitary pulmonary lesions and their pathological types[J/OL]. Front Oncol, 2022, 12: 907860 [2023-07-21]. https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2022.907860/full. DOI: 10.3389/fonc.2022.907860.
[32]
SHI B W, XUE K, YIN Y L, et al. Grading of clear cell renal cell carcinoma using diffusion MRI with a fractional order calculus model[J]. Acta Radiol, 2023, 64(1): 421-430. DOI: 10.1177/02841851211072482.
[33]
YOON J H, NICKEL M D, PEETERS J M, et al. Rapid imaging: recent advances in abdominal MRI for reducing acquisition time and its clinical applications[J]. Korean J Radiol, 2019, 20(12): 1597-1615. DOI: 10.3348/kjr.2018.0931.
[34]
SANDERINK W B G, TEUWEN J, APPELMAN L, et al. Comparison of simultaneous multi-slice single-shot DWI to readout-segmented DWI for evaluation of breast lesions at 3T MRI[J/OL]. Eur J Radiol, 2021, 138: 109626 [2023-08-04]. https://pubmed.ncbi.nlm.nih.gov/33711569/. DOI: 10.1016/j.ejrad.2021.109626.
[35]
MACHIDA Y, NOMURA K, SHIMAUCHI A, et al. Diffusion-weighted imaging with simultaneous multi-slice echo-planar technique for the diagnosis of breast magnetic resonance imaging[J]. Jpn J Radiol, 2020, 38(4): 358-364. DOI: 10.1007/s11604-020-00919-3.
[36]
HU Y Q, ZHAN C N, YANG Z L, et al. Accelerating acquisition of readout-segmented echo planar imaging with a simultaneous multi-slice (SMS) technique for diagnosing breast lesions[J]. Eur Radiol, 2021, 31(5): 2667-2676. DOI: 10.1007/s00330-020-07393-5.
[37]
TANG C L, QIN Y J, HU Q L, et al. Diagnostic value of multi-model high-resolution diffusion-weighted MR imaging in breast lesions: based on simultaneous multi-slice readout-segmented echo-planar imaging[J/OL]. Eur J Radiol, 2022, 154: 110439 [2023-07-14]. https://pubmed.ncbi.nlm.nih.gov/35863281/. DOI: 10.1016/j.ejrad.2022.110439.
[38]
BALTZER P, MANN R M, IIMA M, et al. Diffusion-weighted imaging of the breast-a consensus and mission statement from the EUSOBI International Breast Diffusion-Weighted Imaging working group[J]. Eur Radiol, 2020, 30(3): 1436-1450. DOI: 10.1007/s00330-019-06510-3.

PREV Correlation analysis of MRI features of breast and feasibility of breast conserving surgery
NEXT Research on automatic classification of breast MRI images based on deep learning
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn