Share:
Share this content in WeChat
X
Clinical Article
Evaluation of the therapeutic efficacy of acupuncture in children with autism using DTI
LI Yuxin  DANG Weili  MA Bingxiang  XING Wei  ZHOU Rongyi  KONG Yamin  JING Zhenhao 

Cite this article as: LI Y X, DANG W L, MA B X, et al. Evaluation of the therapeutic efficacy of acupuncture in children with autism using DTI[J]. Chin J Magn Reson Imaging, 2024, 15(1): 61-69. DOI:10.12015/issn.1674-8034.2024.01.010.


[Abstract] Objective Using diffusion tensor imaging (DTI) to observe the changes in the microstructure of white matter in children with autism spectrum disorder (ASD) before and after acupuncture treatment, in order to explore the value of acupuncture in treating ASD and the role of DTI in evaluating the effectiveness of acupuncture.Materials and Methods Prospective inclusion of children diagnosed with ASD in our hospital from November 2021 to October 2022, randomized using a random number table into an acupuncture group or a sham acupuncture group, for 12 weeks of intervention. Before treatment (week 0) and after treatment (week 12), the Child Autism Rating Scale (CARS), Autism Behavior Checklist (ABC), Autism Treatment Evaluation Checklist (ATEC) and DTI examination were performed. The changes in scores of various scales between the two groups were compared, and the tract-based spatial statistics (TBSS) was used to analyze the differences in fractional anisotropy (FA) of white matter between the two groups. Then compare the differences in mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD) of brain regions with varying fractional anisotropy (FA), and explore the correlations between scale ratings and DTI parameters.Results Compared to the sham acupuncture group, the acupuncture group showed a significant decrease in various scale scores after treatment, and the difference was statistically significant (P<0.05). There was a statistically significant difference in FA values between the two groups after treatment (P<0.05), but no significant difference in RD values (P>0.05). In terms of AD values, there was a statistically significant difference between the two groups in the left inferior longitudinal fasciculus (P<0.05). The correlation analysis revealed in children with ASD, the ATEC scores were negatively correlated with the FA values of the right uncinate fasciculus, positively correlated with the RD values of the right infero-frontal-occipital fasciculus, right inferior longitudinal fasciculus, and right uncinate fasciculus, and positively correlated with the AD values of the right uncinate fasciculus. The CARS scores were positively correlated with the AD values of the right uncinate fasciculus (P<0.05). The FA values of the right inferior longitudinal fasciculus were negatively correlated with language problems and sensory abnormalities in children with ASD, while the RD values were positively correlated with social impairments and sensory abnormalities. The FA values of the right uncinate fasciculus were negatively correlated with language problems, social impairments, and sensory abnormalities, while the RD values were positively correlated with these clinical symptoms. The AD values of the right uncinate fasciculus were positively correlated with social impairments and health issues. In addition, the FA values of bilateral infero-frontal-occipital fasciculus were negatively correlated with sensory abnormalities, and the RD values of the right infero-frontal-occipital fasciculus were positively correlated with social impairments and sensory abnormalities. The RD values of the right superior longitudinal fasciculus were positively correlated with sensory abnormalities. The AD values of the left anterior thalamic radiation were positively correlated with sensory abnormalities (P<0.05).Conclusions Acupuncture may improve clinical symptoms in children with ASD, particularly in areas such as speech, social interaction, perception, and health problems, possibly by promoting the integrity of brain white matter fiber bundles. This further indicates the important value of DTI in evaluating the therapeutic effect of acupuncture.
[Keywords] autism spectrum disorder;acupuncture;magnetic resonance imaging;diffusion tensor imaging;tract-based spatial statistics;neural fiber bundle

LI Yuxin1   DANG Weili1, 2   MA Bingxiang1, 2*   XING Wei3   ZHOU Rongyi1, 2   KONG Yamin1, 2   JING Zhenhao1  

1 School of Pediatric Medicine, Henan University of Chinese Medicine, Zhengzhou 450000, China

2 Pediatric Neurology Diagnosis and Rehabilitation Center, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China

3 Department of Magnetic Resonance, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China

Corresponding author: MA B X, E-mail: mbx1963@126.com

Conflicts of interest   None.

Received  2023-07-08
Accepted  2024-01-02
DOI: 10.12015/issn.1674-8034.2024.01.010
Cite this article as: LI Y X, DANG W L, MA B X, et al. Evaluation of the therapeutic efficacy of acupuncture in children with autism using DTI[J]. Chin J Magn Reson Imaging, 2024, 15(1): 61-69. DOI:10.12015/issn.1674-8034.2024.01.010.

[1]
LORD C, ELSABBAGH M, BAIRD G, et al. Autism spectrum disorder[J]. Lancet, 2018, 392(10146): 508-520. DOI: 10.1016/S0140-6736(18)31129-2.
[2]
SUN X, ALLISON C, WEI L, et al. Autism prevalence in China is comparable to Western prevalence[J/OL]. Mol Autism, 2019, 10: 7 [2023-07-08]. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=30858963&query_hl=1. DOI: 10.1186/s13229-018-0246-0.
[3]
HRDLICKA M, SANDA J, URBANEK T, et al. Diffusion tensor imaging and tractography in autistic, dysphasic, and healthy control children[J]. Neuropsychiatr Dis Treat, 2019, 15: 2843-2852. DOI: 10.2147/NDT.S219545.
[4]
MAENNER M J, SHAW K A, BAKIAN A V, et al. Prevalence and characteristics of autism spectrum disorder among children aged 8 years - Autism and developmental disabilities monitoring network, 11 sites, United States, 2018[J]. MMWR Surveill Summ, 2021, 70(11): 1-16. DOI: 10.15585/mmwr.ss7011a1.
[5]
DELEMERE E, DOUNAVI K. Parent-implemented bedtime fading and positive routines for children with autism spectrum disorders[J]. J Autism Dev Disord, 2018, 48(4): 1002-1019. DOI: 10.1007/s10803-017-3398-4.
[6]
DANG W L, LI W, MA B X. Clinical study on the intervention of acupuncture at Neiguan (PC6) for language function in children with autism spectrum disorder[J]. Chinese Journal of Rehabilitation Medicine, 2022, 37(7): 961-963. DOI: 10.3969/j.issn.1001-1242.2022.07.017.
[7]
WANG J, LIU Y, HUANG H Y, et al. Effects of acupuncture on clinical manifestations and gastrointestinal symptoms in children with autism spectrum disorders[J]. Chinese Acupuncture, 2022, 42(12): 1373-1376. DOI: 10.13703/j.0255-2930.20220111-0004.
[8]
DANG W L, LI W, MA B X. Effects of acupuncture intervention on core symptoms in children with autism spectrum disorder[J]. Chinese Journal of Rehabilitation Medicine, 2020, 35(5): 527-532. DOI: 10.3969/j.issn.1001-1242.2020.05.004.
[9]
SKOTARCZAK M, DZIERZANOWSKI J, KASZUBOWSKI M, et al. Diagnostic value of diffusion tensor imaging in patients with clinical signs of cervical spondylotic myelopathy[J]. Neurol Neurochir Pol, 2022, 56(4): 341-348. DOI: 10.5603/PJNNS.a2022.0031.
[10]
LOPE-PIEDRAFITA S. Diffusion tensor imaging (DTI)[J]. Methods Mol Biol, 2018, 1718: 103-116. DOI: 10.1007/978-1-4939-7531-0.
[11]
LAURITSEN M B. Autism spectrum disorders[J]. Eur Child Adolesc Psychiatry, 2013, 22(Suppl 1): S37-S42. DOI: 10.1007/s00787-012-0359-5.
[12]
COTÉ C J, WILSON S. Guidelines for monitoring and management of pediatric patients before, during, and after sedation for diagnostic and therapeutic procedures[J/OL]. Pediatr Dent, 2019, 41(4): 259-260 [2023-07-08]. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=31439084&query_hl=1.
[13]
YAU C H, IP C L, CHAU Y Y. The therapeutic effect of scalp acupuncture on natal autism and regressive autism[J/OL]. Chin Med, 2018, 13: 30 [2023-07-08]. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=29983730&query_hl=1. DOI: 10.1186/s13020-018-0189-6.
[14]
LI Y, ZHOU Z, CHANG C, et al. Anomalies in uncinate fasciculus development and social defects in preschoolers with autism spectrum disorder[J/OL]. BMC Psychiatry, 2019, 19(1): 399 [2023-07-08]. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=31842898&query_hl=1. DOI: 10.1186/s12888-019-2391-1.
[15]
TAN J Y, SUEN L K, WANG T, et al. Sham acupressure controls used in randomized controlled trials: A systematic review and critique[J/OL]. PLoS One, 2015, 10(7): e132989 [2023-07-08]. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=26177378&query_hl=1. DOI: 10.1371/journal.pone.0132989.
[16]
ZHOU R Y, MA B X, ZHOU Z, et al. Distribution and regularity of traditional Chinese medicine patterns in 180 cases of children with autism spectrum disorder[J]. Chinese Journal of Basic Medicine in Traditional Chinese Medicine, 2021, 27(3): 476-479. DOI: 10.19945/j.cnki.issn.1006-3250.2021.03.027.
[17]
DU X, CHEN J, WU Z F, et al. The impact of combining ghost points with syndrome differentiation and acupuncture treatment on core symptoms of children with autism spectrum disorder[J]. Acupuncture Research, 2021, 46(8): 695-699. DOI: 10.13702/j.1000-0607.200652.
[18]
ZHAO N X, HE L N, DU X G, et al. Clinical study on the treatment of communication disorders in children with autism spectrum disorders using diaoshen needle technique[J]. Chin J Tradit Chin Med Pharm, 2021, 36(7): 4399-4401.
[19]
YUAN C, XIAO J, ZHONG Y, et al. Yuan Qing's clinical experience in treating autism with the method of adjusting spirit with acupuncture needles[J]. Chinese Acupuncture, 2021, 41(12): 1383-1386. DOI: 10.13703/j.0255-2930.20201115-k0002.
[20]
HUANG L S, HONG Y, GE P, et al. Curative effect of Jin's three needles therapy on core symptoms and sleep disorder in children with mild-to-moderate autism spectrum disorder[J]. Lishizhen Medicine and Materia Medica Research, 2021, 32(10): 2447-2450. DOI: 10.3969/j.issn.1008-0805.2021.10.35.
[21]
FRIEDRICH P, FRAENZ C, SCHLÜTER C, et al. The relationship between axon density, myelination, and fractional anisotropy in the human corpus callosum[J]. Cereb Cortex, 2020, 30(4): 2042-2056. DOI: 10.1093/cercor/bhz221.
[22]
SHI J, CHANG L, WANG J, et al. Initial application of diffusional kurtosis imaging in evaluating brain development of healthy preterm infants[J/OL]. PLoS One, 2016, 11(4): e154146 [2023-07-08]. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=27101246&query_hl=1. DOI: 10.1371/journal.pone.0154146.
[23]
RANZENBERGER LR, M DAS J, SNYDER T. Diffusion Tensor Imaging[M]. DOI: . Treasure Island (FL): StatPearls Publishing; 2023. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=30726046&query_hl=1.
[24]
PETERSON B S, LIU J, DANTEC L, et al. Using tissue microstructure and multimodal MRI to parse the phenotypic heterogeneity and cellular basis of autism spectrum disorder[J]. J Child Psychol Psychiatry, 2022, 63(8): 855-870. DOI: 10.1111/jcpp.13531.
[25]
SOLDERS S K, CARPER R A, MÜLLER R A. White matter compromise in autism? Differentiating motion confounds from true differences in diffusion tensor imaging[J]. Autism Res, 2017, 10(10): 1606-1620. DOI: 10.1002/aur.1807.
[26]
ARUTIUNIAN V, DAVYDOVA E, PEREVERZEVA D, et al. Reduced grey matter volume of amygdala and hippocampus is associated with the severity of autistic symptoms and language abilities in school-aged children with autism spectrum disorder: an exploratory study[J]. Brain Struct Funct, 2023, 228(6): 1573-1579. DOI: 10.1007/s00429-023-02660-9.
[27]
LIU Y, ZHANG T. Observation of diffusion tensor imaging on white matter abnormalities in children with autism spectrum disorders[J]. Chinese Journal of Rehabilitation Theory and Practice, 2018, 24(11): 1296-1301. DOI: 10.3969/j.issn.1006-9771.2018.00.007.
[28]
CAI K, YU Q, HEROLD F, et al. Mini-basketball training program improves social communication and white matter integrity in children with autism[J/OL]. Brain Sci, 2020, 10(11): 803 [2023-07-08]. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=33142694&query_hl=1. DOI: 10.3390/brainsci10110803.
[29]
YIN Y, XU S, LI C, et al. Association of reduced tract integrity with social communication deficits in preschool autism children: A tract-based spatial statistics study[J]. Neuropsychiatr Dis Treat, 2021, 17: 2003-2010. DOI: 10.2147/NDT.S306596.
[30]
ANDREWS D S, LEE J K, HARVEY D J, et al. A longitudinal study of white matter development in relation to changes in autism severity across early childhood[J]. Biol Psychiatry, 2021, 89(5): 424-432. DOI: 10.1016/j.biopsych.2020.10.013.
[31]
IVANOVA M V, ISAEV D Y, DRAGOY O V, et al. Diffusion-tensor imaging of major white matter tracts and their role in language processing in aphasia[J]. Cortex, 2016, 85: 165-181. DOI: 10.1016/j.cortex.2016.04.019.
[32]
SCHRÖDER Y, HOHMANN D M, MELLER T, et al. Associations of subclinical autistic-like traits with brain structural variation using diffusion tensor imaging and voxel-based morphometry[J/OL]. Eur Psychiatry, 2021, 64(1): e27 [2023-07-08]. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=33653433&query_hl=1. DOI: 10.1192/j.eurpsy.2021.15.
[33]
JANELLE F, IORIO-MORIN C, D'AMOUR S, et al. Superior longitudinal fasciculus: A review of the anatomical descriptions with functional correlates[J/OL]. Front Neurol, 2022, 13: 794618 [2023-07-08]. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=35572948&query_hl=1. DOI: 10.3389/fneur.2022.794618.
[34]
LIBERO L E, BURGE W K, DESHPANDE H D, et al. White matter diffusion of major fiber tracts implicated in autism spectrum disorder[J]. Brain Connect, 2016, 6(9): 691-699. DOI: 10.1089/brain.2016.0442.
[35]
ARUNACHALAM C V, PLIATSIKAS C, NEUFELD J, et al. Brain structural correlates of autistic traits across the diagnostic divide: A grey matter and white matter microstructure study[J/OL]. Neuroimage Clin, 2021, 32: 102897 [2023-07-08]. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=34911200&query_hl=1. DOI: 10.1016/j.nicl.2021.102897.
[36]
ZHANG M, HU X, JIAO J, et al. Brain white matter microstructure abnormalities in children with optimal outcome from autism: a four-year follow-up study[J/OL]. Sci Rep, 2022, 12(1): 20151 [2023-07-08]. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=36418886&query_hl=1. DOI: 10.1038/s41598-022-21085-8.
[37]
ROBERTS T P, HEIKEN K, ZARNOW D, et al. Left hemisphere diffusivity of the arcuate fasciculus: influences of autism spectrum disorder and language impairment[J]. AJNR Am J Neuroradiol, 2014, 35(3): 587-592. DOI: 10.3174/ajnr.A3754.
[38]
HERBET G, ZEMMOURA I, DUFFAU H. Functional anatomy of the inferior longitudinal fasciculus: from historical reports to current hypotheses[J/OL]. Front Neuroanat, 2018, 12: 77 [2023-07-08]. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=30283306&query_hl=1. DOI: 10.3389/fnana.2018.00077.
[39]
HUNG Y, DALLENBACH N T, GREEN A, et al. Distinct and shared white matter abnormalities when ADHD is comorbid with ASD: A preliminary diffusion tensor imaging study[J/OL]. Psychiatry Res, 2023, 320: 115039 [2023-07-08]. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=36640678&query_hl=1. DOI: 10.1016/j.psychres.2022.115039.
[40]
SAMSON A C, DOUGHERTY R F, LEE I A, et al. White matter structure in the uncinate fasciculus: Implications for socio-affective deficits in autism spectrum disorder[J]. Psychiatry Res Neuroimaging, 2016, 255: 66-74. DOI: 10.1016/j.pscychresns.2016.08.004.
[41]
LIN C W, LIN H Y, LO Y C, et al. Alterations in white matter microstructure and regional volume are related to motor functions in boys with autism spectrum disorder[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2019, 90: 76-83. DOI: 10.1016/j.pnpbp.2018.11.008.
[42]
HAU J, S K J, SHRYOCK I, et al. Supplementary and premotor aspects of the corticospinal tract show links with restricted and repetitive behaviors in middle-aged adults with autism spectrum disorder[J]. Cereb Cortex, 2021, 31(8): 3962-3972. DOI: 10.1093/cercor/bhab062.
[43]
SAAYBI S, ALARAB N, HANNOUN S, et al. Pre- and post-therapy assessment of clinical outcomes and white matter integrity in autism spectrum disorder: Pilot study[J/OL]. Front Neurol, 2019, 10: 877 [2023-07-08]. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=31456741&query_hl=1. DOI: 10.3389/fneur.2019.00877.
[44]
TSOLAKI E, SHETH S A, POURATIAN N. Variability of white matter anatomy in the subcallosal cingulate area[J]. Hum Brain Mapp, 2021, 42(7): 2005-2017. DOI: 10.1002/hbm.25341.
[45]
STEPHENS K, SILK T J, ANDERSON V, et al. Associations between limbic system white matter structure and socio-emotional functioning in children with ADHD + ASD[J]. J AutismDev Disord, 2021, 51(8): 2663-2672. DOI: 10.1007/s10803-020-04738-3.
[46]
HUNG Y, UCHIDA M, GAILLARD S L, et al. Cingulum-Callosal white-matter microstructure associated with emotional dysregulation in children: A diffusion tensor imaging study[J/OL]. Neuroimage Clin, 2020, 27: 102266 [2023-07-08]. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=32408198&query_hl=1. DOI: 10.1016/j.nicl.2020.102266.
[47]
DOWE K N, PLANALP E M, DEAN D R, et al. Early microstructure of white matter associated with infant attention[J/OL]. Dev Cogn Neurosci, 2020, 45: 100815 [2023-07-08]. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=32658763&query_hl=1. DOI: 10.1016/j.dcn.2020.100815.
[48]
THOMPSON A, MURPHY D, DELL'ACQUA F, et al. Impaired communication between the motor and somatosensory homunculus is associated with poor manual dexterity in autism spectrum disorder[J]. Biol Psychiatry, 2017, 81(3): 211-219. DOI: 10.1016/j.biopsych.2016.06.020.
[49]
BOETS B, VAN EYLEN L, SITEK K, et al. Alterations in the inferior longitudinal fasciculus in autism and associations with visual processing: a diffusion-weighted MRI study[J/OL]. Mol Autism, 2018, 9: 10 [2023-07-08]. DOI: 10.1186/s13229-018-0188-6.
[50]
CHEN H F, HUANG L L, LI H Y, et al. Microstructural disruption of the right inferior fronto-occipital and inferior longitudinal fasciculus contributes to WMH-related cognitive impairment[J]. CNS Neurosci Ther, 2020, 26(5): 576-588. DOI: 10.1111/cns.13283.
[51]
ANDELMAN-GUR M M, GAZIT T, STRAUSS I, et al. Stimulating the inferior fronto-occipital fasciculus elicits complex visual hallucinations[J]. Brain Stimul, 2020, 13(6): 1577-1579. DOI: 10.1016/j.brs.2020.09.003.
[52]
SUZUKI Y, ENATSU R, KANNO A, et al. The auditory cortex network in the posterior superior temporal area[J]. Clin Neurophysiol, 2018, 129(10): 2132-2136. DOI: 10.1016/j.clinph.2018.07.014.
[53]
DAVID S, BROWN L L, HEEMSKERK A M, et al. Sensory processing sensitivity and axonal microarchitecture: identifying brain structural characteristics for behavior[J]. Brain Struct Funct, 2022, 227(8): 2769-2785. DOI: 10.1007/s00429-022-02571-1.
[54]
MARTÍNEZ K, MERCHÁN-NARANJO J, PINA-CAMACHO L, et al. Atypical age-dependency of executive function and white matter microstructure in children and adolescents with autism spectrum disorders[J]. Eur Child Adolesc Psychiatry, 2017, 26(11): 1361-1376. DOI: 10.1007/s00787-017-0990-2.
[55]
CHEON K A, KIM Y S, OH S H, et al. Involvement of the anterior thalamic radiation in boys with high functioning autism spectrum disorders: a diffusion tensor imaging study[J]. Brain Res, 2011, 1417: 77-86. DOI: 10.1016/j.brainres.2011.08.020.
[56]
CLARKE W T, STAGG C J, JBABDI S. FSL-MRS: An end-to-end spectroscopy analysis package[J]. Magn Reson Med, 2021, 85(6): 2950-2964. DOI: 10.1002/mrm.28630.
[57]
LEI J, LECARIE E, JURAYJ J, et al. Altered neural connectivity in females, but not males with autism: preliminary evidence for the female protective effect from a quality-controlled diffusion tensor imaging study[J]. Autism Res, 2019, 12(10): 1472-1483. DOI: 10.1002/aur.2180.
[58]
TÉTREAULT P, HARKINS K D, BARON C A, et al. Diffusion time dependency along the human corpus callosum and exploration of age and sex differences as assessed by oscillating gradient spin-echo diffusion tensor imaging[J/OL]. Neuroimage, 2020, 210: 116533 [2023-07-08]. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=31935520&query_hl=1. DOI: 10.1016/j.neuroimage.2020.116533.

PREV Research on automatic classification of breast MRI images based on deep learning
NEXT The observations on the properties of metabolic network connectivity within striatal-thalamo-cortical circuit in patients with Parkinson,s diseases by arterial spin labeling imaging
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn