Share:
Share this content in WeChat
X
Clinical Article
The observations on the properties of metabolic network connectivity within striatal-thalamo-cortical circuit in patients with Parkinson's diseases by arterial spin labeling imaging
WANG Yang  SU Hui  WANG Ning  SUN Cunke  LIU Haihua  ZHU Chengwei 

Cite this article as: WANG Y, SU H, WANG N, et al. The observations on the properties of metabolic network connectivity within striatal-thalamo-cortical circuit in patients with Parkinson's diseases by arterial spin labeling imaging[J]. Chin J Magn Reson Imaging, 2024, 15(1): 70-75, 81. DOI:10.12015/issn.1674-8034.2024.01.011.


[Abstract] Objective To investigate the imaging features of striatal-thalamo-cortical (STC) circuit disturbance in patients with Parkinson's disease (PD) from the perspective of metabolic network connectivity.Materials and Methods The data of cerebral blood flow (CBF) from 62 patients with PD and 65 healthy control (HC) subjects were obtained using arterial spin labeling imaging. For both the HC and PD groups, the connectivity properties of metabolic networks within basal ganglia region-cortical circuit were calculated based on their CBF information, including seed-connectivity, cortical-connectivity and modular-connectivity. Permutation test were then employed for the intergroup comparisons of these three types of network connectivity, respectively.Results There were no significant differences in terms of age, sex, education and cognitive scale scores between the two groups (P>0.05). Compared with HC subjects, the value of seed-connectivity in patients with PD was significantly higher in the bilateral inferior temporal gyrus, bilateral fusiform gyrus, bilateral medial frontal gyrus, left middle occipital gyrus and right posterior central gyrus; whereas were significantly lower in the bilateral middle temporal gyrus, left rectus gyrus, left superior temporal gyrus, bilateral inferior frontal gyrus, bilateral precuneus, right supplementary motor area and bilateral inferior parietal gyrus (P<0.05); there were significantly enhanced cortical-connectivity with sensorimotor cortex, whereas significantly weakened cortical-connectivity with motor cortex and parietal-occipital cortex (P<0.05); the modular-connectivity was significantly increased in modules of frontal and motor, modules of sensorimotor and parietal-occipital as well as modules of parietal-occipital and temporal, whereas significantly decreased in modules of frontal and temporal, modules of motor and parietal-occipital and modules of sensorimotor and temporal (P<0.05).Conclusions Patients with PD exhibited with metabolic disturbance of neural network, involving extensive connectivity abnormalities in the STC loop with basal ganglia region as the hub .
[Keywords] Parkinson's disease;magnet resonance imaging;arterial spin labeling imaging;cerebral blood flow;metabolism;network connectivity

WANG Yang1   SU Hui1*   WANG Ning1   SUN Cunke1   LIU Haihua2   ZHU Chengwei1  

1 Department of Radiology, Gaoyou People's Hospital, Yangzhou 225600, China

2 Department of Neuorology, Gaoyou People's Hospital, Yangzhou 225600, China

Corresponding author: SU H, E-mail: sh668800@126.com

Conflicts of interest   None.

Received  2023-08-30
Accepted  2023-12-05
DOI: 10.12015/issn.1674-8034.2024.01.011
Cite this article as: WANG Y, SU H, WANG N, et al. The observations on the properties of metabolic network connectivity within striatal-thalamo-cortical circuit in patients with Parkinson's diseases by arterial spin labeling imaging[J]. Chin J Magn Reson Imaging, 2024, 15(1): 70-75, 81. DOI:10.12015/issn.1674-8034.2024.01.011.

[1]
KALIA L V, LANG A E. Parkinson's disease[J]. Lancet, 2015, 386(9996): 896-912. DOI: 10.1016/S0140-6736(14)61393-3.
[2]
RAZA C, ANJUM R, SHAKEEL N U A. Parkinson's disease: Mechanisms, translational models and management strategies[J]. Life Sci, 2019, 226: 77-90. DOI: 10.1016/j.lfs.2019.03.057.
[3]
ZHAO X L, WANG M, IN X, et al. Characteristics and related factors of cognitive impairment in elderly PD patients[J]. Chin J Geriatr Heart Brain Vessel Dis, 2021, 23(9): 904-907. DOI: 10.3969/j.issn.1009-0126.2021.09.003.
[4]
CRONIN-GOLOMB A. Parkinson's disease as a disconnection syndrome[J]. Neuropsychol Rev, 2010, 20(2): 191-208. DOI: 10.1007/s11065-010-9128-8.
[5]
ZENG W, FAN W, KONG X, et al. Altered intra- and inter-network connectivity in drug-naive patients with early Parkinson's disease[J/OL]. Front Aging Neurosci, 2022, 14: 783634 [2023-08-30]. https://pubmed.ncbi.nlm.nih.gov/35237144/. DOI: 10.3389/fnagi.2022.783634.
[6]
SHANG S, WU J, ZHANG H, et al. Motor asymmetry related cerebral perfusion patterns in Parkinson's disease: An arterial spin labeling study[J]. Hum Brain Mapp, 2021, 42(2): 298-309. DOI: 10.1002/hbm.25223.
[7]
PAN Y, QU H, ZHAO Y, et al. Functional network connectivity analysis in sensorimotor area of Parkinson's disease[J]. Chin J Magn Reson Imaging, 2021, 12(4): 6-11. DOI: 10.12015/issn.1674-8034.2021.04.002.
[8]
COMPTA Y, REVESZ T. Neuropathological and biomarker findings in Parkinson's disease and Alzheimer's disease: From protein aggregates to synaptic dysfunction[J]. J Parkinsons Dis, 2021, 11(1): 107-121. DOI: 10.3233/JPD-202323.
[9]
LI X M, SONG J, ZHU Y H, et al. The study on metabolic brain networks of glucose in patients with early Parkinson's disease by 18F-FDG PET imaging[J]. Chin Comput Med Imag, 2018, 24(1): 88-91. DOI: 10.3969/j.issn.1006-5741.2018.01.018.
[10]
MA Y, HUANG C, DYKE J P, et al. Parkinson's disease spatial covariance pattern: noninvasive quantification with perfusion MRI[J]. J Cereb Blood Flow Metab, 2010, 30(3): 505-509. DOI: 10.1038/jcbfm.2009.256.
[11]
MELIE-GARCIA L, SANABRIA-DIAZ G, SANCHEZ-CATASUS C. Studying the topological organization of the cerebral blood flow fluctuations in resting state[J]. Neuroimage, 2013, 64: 173-184. DOI: 10.1016/j.neuroimage.2012.08.082.
[12]
POSTUMA R B, BERG D, STERN M, et al. MDS clinical diagnostic criteria for Parkinson's disease[J]. Mov Disord, 2015, 30(12): 1591-1601. DOI: 10.1002/mds.26424.
[13]
TZOURIO-MAZOYER N, LANDEAU B, PAPATHANASSIOU D, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain[J]. Neuroimage, 2002, 15(1): 273-289. DOI: 10.1006/nimg.2001.0978.
[14]
ZHANG D, SNYDER A Z, FOX M D, et al. Intrinsic functional relations between human cerebral cortex and thalamus[J]. J Neurophysiol, 2008, 100(4): 1740-1748. DOI: 10.1152/jn.90463.2008.
[15]
XU Q, ZHANG Q, YANG F, et al. Cortico-striato-thalamo-cerebellar networks of structural covariance underlying different epilepsy syndromes associated with generalized tonic-clonic seizures[J]. Hum Brain Mapp, 2021, 42(4): 1102-1115. DOI: 10.1002/hbm.25279.
[16]
XU Q, ZHANG Q, LIU G, et al. BCCT: A GUI toolkit for brain structural covariance connectivity analysis on MATLAB[J/OL]. Front Hum Neurosci, 2021, 15: 641961 [2023-08-30]. https://pubmed.ncbi.nlm.nih.gov/33958993/. DOI: 10.3389/fnhum.2021.641961.
[17]
PUIG O, HENRIKSEN O M, VESTERGAARD M B, et al. Comparison of simultaneous arterial spin labeling MRI and 15O-H2O PET measurements of regional cerebral blood flow in rest and altered perfusion states[J]. J Cereb Blood Flow Metab, 2020, 40(8): 1621-1633. DOI: 10.1177/0271678X19874643.
[18]
CALABRESI P, PICCONI B, TOZZI A, et al. Direct and indirect pathways of basal ganglia: a critical reappraisal[J]. Nat Neurosci, 2014, 17(8): 1022-1030. DOI: 10.1038/nn.3743.
[19]
JOSHI D, PRASAD S, SAINI J, et al. Role of arterial spin labeling (ASL) images in Parkinson's disease (PD): A systematic review[J]. Acad Radiol, 2023, 30(8): 1695-1708. DOI: 10.1016/j.acra.2022.11.001.
[20]
RANE S, KOH N, OAKLEY J, et al. Arterial spin labeling detects perfusion patterns related to motor symptoms in Parkinson's disease[J]. Parkinsonism Relat Disord, 2020, 76: 21-28. DOI: 10.1016/j.parkreldis.2020.05.014.
[21]
LI X Y, TIAN Y T, WANG X N, et al. Cerebral perfusion in Parkinson's disease with depression: An arterial spin labeling MRI study[J]. Chin J Magn Reson Imaging, 2023, 14(01): 6-12. DOI: 10.12015/issn.1674-8034.2023.01.002.
[22]
MAITH O, VILLAGRASA ESCUDERO F, DINKELBACH H U, et al. A computational model-based analysis of basal ganglia pathway changes in Parkinson's disease inferred from resting-state fMRI[J]. Eur J Neurosci, 2021, 53(7): 2278-2295. DOI: 10.1111/ejn.14868.
[23]
LI R, ZOU T, WANG X, et al. Basal ganglia atrophy-associated causal structural network degeneration in Parkinson's disease[J]. Hum Brain Mapp, 2022, 43(3): 1145-1156. DOI: 10.1002/hbm.25715.
[24]
ROLINSKI M, GRIFFANTI L, SZEWCZYK-KROLIKOWSKI K, et al. Aberrant functional connectivity within the basal ganglia of patients with Parkinson's disease[J]. Neuroimage Clin, 2015, 8: 126-132. DOI: 10.1016/j.nicl.2015.04.003.
[25]
CHEN Y, PRESSMAN P, SIMUNI T, et al. Effects of acute levodopa challenge on resting cerebral blood flow in Parkinson's disease patients assessed using pseudo-continuous arterial spin labeling[J/OL]. PeerJ, 2015, 3: e1381 [2023-08-30]. https://pubmed.ncbi.nlm.nih.gov/26734502/. DOI: 10.7717/peerj.1381.
[26]
SHANG S, YE J, WU J, et al. Early disturbance of dynamic synchronization and neurovascular coupling in cognitively normal Parkinson's disease[J]. J Cereb Blood Flow Metab, 2022, 42(9): 1719-1731. DOI: 10.1177/0271678X221098503.
[27]
YANG W R, CHEN H R, LI Q R, et al. Research progress of functional magnetic resonance imaging of resting brain network in supplementary motor area of Parkinson's disease[J]. Chin J Magn Reson Imaging, 2021, 12(11): 90-93. DOI: 10.12015/issn.1674-8034.2021.11.022.
[28]
XIONG S N, WANG N, GUO R, et al. Resting state functional magnetic resonance imaging observation on the characteristics of spontaneous brain activity and functional connectivity in Parkinson's diseases[J]. Chin J Magn Reson Imaging, 2023, 14(1): 25-31. DOI: 10.12015/issn.1674-8034.2023.01.005.
[29]
MELES S K, OERTEL W H, LEENDERS K L. Circuit imaging biomarkers in preclinical and prodromal Parkinson's disease[J/OL]. Mol Med, 2021, 27(1): 111 [2023-08-30]. https://pubmed.ncbi.nlm.nih.gov/34530732/. DOI: 10.1186/s10020-021-00327-x.
[30]
ANTICEVIC A, COLE M W, REPOVS G, et al. Characterizing thalamo-cortical disturbances in schizophrenia and bipolar illness[J]. Cereb Cortex, 2014, 24(12): 3116-3130. DOI: 10.1093/cercor/bht165.
[31]
HSIEH H, XU Q, YANG F, et al. Distinct functional cortico-striato-thalamo-cerebellar networks in genetic generalized and focal epilepsies with generalized tonic-clonic seizures[J/OL]. J Clin Med, 2022, 11(6): 1612 [2023-08-30]. https://pubmed.ncbi.nlm.nih.gov/35329938/. DOI: 10.3390/jcm11061612.
[32]
ZHANG X, CAO X, XUE C, et al. Aberrant functional connectivity and activity in Parkinson's disease and comorbidity with depression based on radiomic analysis[J/OL]. Brain Behav, 2021, 11(5): e02103 [2023-08-30]. https://pubmed.ncbi.nlm.nih.gov/33694328/. DOI: 10.1002/brb3.2103.
[33]
HAVSTEEN I, DAMM NYBING J, CHRISTENSEN H, et al. Arterial spin labeling: a technical overview[J]. 2018, 59(10): 1232-1238. DOI: 10.1177/0284185117752552.
[34]
SPORNS O, BETZEL R F. Modular brain networks[J]. Annu Rev Psychol, 2016, 67: 613-640. DOI: 10.1146/annurev-psych-122414-033634.
[35]
PUXEDDU M G, FASKOWITZ J, SPORNS O, et al. Multi-modal and multi-subject modular organization of human brain networks[J/OL]. Neuroimage, 2022, 264: 119673 [2023-08-30]. https://pubmed.ncbi.nlm.nih.gov/36257489/. DOI: 10.1016/j.neuroimage.2022.119673.
[36]
INOKUCHI K. Adult neurogenesis and modulation of neural circuit function[J]. Curr Opin Neurobiol, 2011, 21(2): 360-364. DOI: 10.1016/j.conb.2011.02.006.
[37]
HWANG K, BERTOLERO MA, LIU WB, et al. The Human Thalamus Is an Integrative Hub for Functional Brain Networks[J]. J Neurosci, 2017, 37(23): 5594-5607. DOI: 10.1523/JNEUROSCI.0067-17.2017.

PREV Evaluation of the therapeutic efficacy of acupuncture in children with autism using DTI
NEXT The correlation between microstructural changes in the hypothalamus and mild cognitive impairment and short-chain fatty acids in the gut in T2DM patients
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn