Share:
Share this content in WeChat
X
Clinical Article
The correlation between microstructural changes in the hypothalamus and mild cognitive impairment and short-chain fatty acids in the gut in T2DM patients
XU Shan  WANG Xuyang  YANG Dong  SHEN Jing  LIN Lin  WU Jianlin 

Cite this article as: XU S, WANG X Y, YANG D, et al. The correlation between microstructural changes in the hypothalamus and mild cognitive impairment and short-chain fatty acids in the gut in T2DM patients[J]. Chin J Magn Reson Imaging, 2024, 15(1): 76-81. DOI:10.12015/issn.1674-8034.2024.01.012.


[Abstract] Objective To assess microstructural changes in the posterior thalamus of type 2 diabetes mellitus (T2DM) patients using diffusion kurtosis imaging (DKI) and investigate the correlation between DKI parameter changes, cognitive function scores, and alterations in short-chain fatty acids in the gut.Materials and Methods DKI data were collected from both sides of the thalamus in 57 T2DM patients [comprising 29 T2DM-mild cognitive impairment (MCI) cases and 28 T2DM-nonMCI and 30 healthy controls (HC group)]. Various DKI parameters including fractional anisotropy (FA), mean kurtosis (MK), radial kurtosis (RK), and fractional anisotropy of kurtosis (FAK) were measured. Additionally, short-chain fatty acid levels in the gut were assessed. Correlation analyses were performed between the average DKI parameter values in different brain regions among the three groups, cognitive function scores, and short-chain fatty acids.Results The T2DM-MCI group exhibited significantly lower left thalamic MK values compared to both the T2DM-nonMCI and HC groups (P<0.05). In comparison to HC, the T2DM-MCI group showed a general decrease in left thalamic RK, right thalamic FA, and KFA values (P<0.05). Pairwise comparisons revealed statistically significant differences in left thalamic RK values between HC and T2DM-nonMCI groups (P<0.05), as well as in right thalamic FA and KFA values between T2DM-nonMCI and T2DM-MCI groups (P<0.05). Furthermore, in T2DM patients, there was a positive correlation between right thalamic FA and FAK values and MoCA scores (r=0.328, P=0.015; r=0.435, P=0.001). Left thalamic RK values were positively correlated with butyric acid (r=0.431, P=0.001). Left thalamic MK values exhibited positive correlations with MoCA scores and butyric acid (r=0.294, P=0.030; r=0.287, P=0.033). Right thalamic FAK values showed a negative correlation with TMT-A scores (r=-0.318, P=0.018).Conclusions Microstructural changes in the thalamus of T2DM patients may be an important physiological mechanism underlying cognitive impairment, and gut butyric acid levels may partially influence the microstructural integrity of the left thalamus.
[Keywords] type 2 diabetes;diffusion kurtosis imaging;magnetic resonance imaging;intestinal short-chain fatty acids;cognitive dysfunction

XU Shan   WANG Xuyang   YANG Dong   SHEN Jing   LIN Lin   WU Jianlin*  

Department of Radiology Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China

Corresponding author: WU J L, E-mail: cjr.wujianlin@vip.163.com

Conflicts of interest   None.

Received  2023-08-10
Accepted  2024-01-04
DOI: 10.12015/issn.1674-8034.2024.01.012
Cite this article as: XU S, WANG X Y, YANG D, et al. The correlation between microstructural changes in the hypothalamus and mild cognitive impairment and short-chain fatty acids in the gut in T2DM patients[J]. Chin J Magn Reson Imaging, 2024, 15(1): 76-81. DOI:10.12015/issn.1674-8034.2024.01.012.

[1]
SUN H, SAEEDI P, KARURANGA S, et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045[J/OL]. Diabetes Res Clin Pract, 2022, 183: 109119 [2023-08-10]. https://pubmed.ncbi.nlm.nih.gov/34879977/. DOI: 10.1016/j.diabres.2021.109119.
[2]
TYAGI A, PUGAZHENTHI S. Targeting insulin resistance to treat cognitive dysfunction[J]. Mol Neurobiol, 2021, 58(6): 2672-2691. DOI: 10.1007/s12035-021-02283-3.
[3]
LIVINGSTON G, HUNTLEY J, SOMMERLAD A, et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission[J]. Lancet, 2020, 396(10248): 413-446. DOI: 10.1016/S0140-6736(20)30367-6.
[4]
XIONG Y, SUI Y, ZHANG S, et al. Brain microstructural alterations in type 2 diabetes: diffusion kurtosis imaging provides added value to diffusion tensor imaging[J]. Eur Radiol, 2019, 29(4): 1997-2008. DOI: 10.1007/s00330-018-5746-y.
[5]
DU Y, LI X, AN Y, et al. Association of gut microbiota with sort-chain fatty acids and inflammatory cytokines in diabetic patients with cognitive impairment: A cross-sectional, non-controlled study[J/OL]. Front Nutr, 2022, 9: 930626 [2023-08-10]. https://pubmed.ncbi.nlm.nih.gov/35938126/. DOI: 10.3389/fnut.2022.930626.
[6]
WOLFF M, MORCEAU S, FOLKARD R, et al. A thalamic bridge from sensory perception to cognition[J]. Neurosci Biobehav Rev, 2021, 120: 222-235. DOI: 10.1016/j.neubiorev.2020.11.013.
[7]
LIU H, XIANG Y, LIU J, et al. Diffusion kurtosis imaging and diffusion tensor imaging parameters applied to white matter and gray matter of patients with anti-N-methyl-D-aspartate receptor encephalitis[J/OL]. Front Neurosci, 2022, 16: 1030230 [2023-08-10]. https://pubmed.ncbi.nlm.nih.gov/36507336/. DOI: 10.3389/fnins.2022.1030230.
[8]
ZHAO X, ZHANG C, ZHANG B, et al. The value of diffusion kurtosis imaging in detecting delayed brain development of premature infants[J/OL]. Front Neurol, 2021, 12: 789254 [2023-08-10]. https://pubmed.ncbi.nlm.nih.gov/34966352/. DOI: 10.3389/fneur.2021.789254.
[9]
American Diabetes Association. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2021[J]. Diabetes Care, 2021, 44(Suppl 1): S15-S33. DOI: 10.2337/dc21-S002.
[10]
PERRY B A L, LOMI E, MITCHELL A S. Thalamocortical interactions in cognition and disease: The mediodorsal and anterior thalamic nuclei[J]. Neurosci Biobehav Rev, 2021, 130: 162-177. DOI: 10.1016/j.neubiorev.2021.05.032.
[11]
TANG X, CHEN Y, TAN H, et al. Micro- and macro-changes in early-stage type 2 diabetes mellitus without cognitive impairment: a diffusion tensor imaging (DTI) and surface-based morphometry (SBM) study[J/OL]. Front Neurol, 2023, 14: 1115634 [2023-08-10]. https://pubmed.ncbi.nlm.nih.gov/37475732/. DOI: 10.3389/fneur.2023.1115634.
[12]
HUANG H, MA X, YUE X, et al. White matter characteristics of damage along fiber tracts in patients with type 2 diabetes mellitus[J]. Clin Neuroradiol, 2023, 33(2): 327-341. DOI: 10.1007/s00062-022-01213-7.
[13]
ANDICA C, KAMAGATA K, HATANO T, et al. MR biomarkers of degenerative brain disorders derived from diffusion imaging[J]. J Magn Reson Imaging, 2020, 52(6): 1620-1636. DOI: 10.1002/jmri.27019.
[14]
DEMIR S, NAWROTH P P, HERZIG S, et al. Emerging targets in type 2 diabetes and diabetic complications[J/OL]. Adv Sci (Weinh), 2021, 8(18): e2100275 [2023-08-10]. https://pubmed.ncbi.nlm.nih.gov/34319011/. DOI: 10.1002/advs.202100275.
[15]
MA P C, CUI S L, WANG J, et al. Magnetic resonance voxel analysis and diffusion kurtosis imaging of medial temporal lobe in patients with temporal lobe epilepsy and cognitive impairment[J]. Chin J Magn Reson Imaging, 2023, 14(2): 1-5 , 20. DOI: 10.12015/issn.1674-8034.2023.02.001.
[16]
KARLSEN R H, EINARSEN C, MOE H K, et al. Diffusion kurtosis imaging in mild traumatic brain injury and postconcussional syndrome[J]. J Neurosci Res, 2019, 97(5): 568-581. DOI: 10.1002/jnr.24383.
[17]
CASSEL J C, FERRARIS M, QUILICHINI P, et al. The reuniens and rhomboid nuclei of the thalamus: A crossroads for cognition-relevant information processing?[J]. Neurosci Biobehav Rev, 2021, 126: 338-360. DOI: 10.1016/j.neubiorev.2021.03.023.
[18]
LI C, ZUO Z, LIU D, et al. Type 2 diabetes mellitus may exacerbate gray matter atrophy in patients with early-onset mild cognitive impairment[J/OL]. Front Neurosci, 2020, 14: 856 [2023-08-10]. https://pubmed.ncbi.nlm.nih.gov/32848591/. DOI: 10.3389/fnins.2020.00856.
[19]
SOCAŁA K, DOBOSZEWSKA U, SZOPA A, et al. The role of microbiota-gut-brain axis in neuropsychiatric and neurological disorders[J/OL]. Pharmacol Res, 2021, 172: 105840 [2023-08-10]. https://pubmed.ncbi.nlm.nih.gov/34450312/. DOI: 10.1016/j.phrs.2021.105840.
[20]
MAYER E A, NANCE K, CHEN S. The gut-brain axis[J]. Annu Rev Med, 2022, 73: 439-453. DOI: 10.1146/annurev-med-042320-014032
[21]
XIAO W, SU J, GAO X, et al. The microbiota-gut-brain axis participates in chronic cerebral hypoperfusion by disrupting the metabolism of short-chain fatty acids[J/OL]. Microbiome, 2022, 10(1): 62 [2023-08-10]. https://pubmed.ncbi.nlm.nih.gov/35430804/. DOI: 10.1186/s40168-022-01255-6.
[22]
HUANG Y T, KAN Y J, ZHU Y J, et al. Effects of aqueous decoction of radix et rhizoma ginseng on intestinal short-chain fatty acid content in T2DM rats[J]. Ginseng Research, 2022, 34(2): 6-11. DOI: 10.19403/j.cnki.1671-1521.2022.02.002.
[23]
LIU L, ZHANG J, CHENG Y, et al. Gut microbiota: A new target for T2DM prevention and treatment[J/OL]. Front Endocrinol (Lausanne), 2022, 13: 958218 [2023-08-10]. https://pubmed.ncbi.nlm.nih.gov/36034447/. DOI: 10.3389/fendo.2022.958218.
[24]
CHU N, CHAN J C, CHOW E. A diet high in FODMAPs as a novel dietary strategy in diabetes?[J]. Clin Nutr, 2022, 41(10): 2103-2112. DOI: 10.1016/j.clnu.2022.07.036.
[25]
ZHAO Q, ZHANG F, YU Z, et al. HDAC3 inhibition prevents blood-brain barrier permeability through Nrf2 activation in type 2 diabetes male mice[J/OL]. J Neuroinflammation, 2019, 16(1): 103 [2023-08-10]. https://pubmed.ncbi.nlm.nih.gov/31101061/. DOI: 10.1186/s12974-019-1495-3.
[26]
GAO C, LI B, HE Y, et al. Early changes of fecal short-chain fatty acid levels in patients with mild cognitive impairments[J]. CNS Neurosci Ther, 2023, 29(11): 3657-3666. DOI: 10.1111/cns.14252.
[27]
SHI H, GE X, MA X, et al. A fiber-deprived diet causes cognitive impairment and hippocampal microglia-mediated synaptic loss through the gut microbiota and metabolites[J/OL]. Microbiome, 2021, 9(1): 223 [2023-08-10]. https://pubmed.ncbi.nlm.nih.gov/34758889/. DOI: 10.1186/s40168-021-01172-0.
[28]
ZHENG H, XU P, JIANG Q, et al. Depletion of acetate-producing bacteria from the gut microbiota facilitates cognitive impairment through the gut-brain neural mechanism in diabetic mice[J/OL]. Microbiome, 2021, 9(1): 145 [2023-08-10]. https://pubmed.ncbi.nlm.nih.gov/34172092/. DOI: 10.1186/s40168-021-01088-9.

PREV The observations on the properties of metabolic network connectivity within striatal-thalamo-cortical circuit in patients with Parkinson,s diseases by arterial spin labeling imaging
NEXT A study on rs-fMRI dynamic functional network connectivity in patients with type 2 diabetic
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn