Share:
Share this content in WeChat
X
Clinical Article
Percent amplitude of fluctuation study in primary angle-closure glaucoma based on resting-state fMRI
TANG Qiuyu  HUANG Binglin  HUANG Xin  XIE Yuyan  WEI Hanlei  HUANG Qin 

Cite this article as: TANG Q Y, HUANG B L, HUANG X, et al. Percent amplitude of fluctuation study in primary angle-closure glaucoma based on resting-state fMRI[J]. Chin J Magn Reson Imaging, 2024, 15(1): 95-100. DOI:10.12015/issn.1674-8034.2024.01.015.


[Abstract] Objective To study the changes of percentage fluctuation amplitude (PerAF) in patients with primary angle-closure glaucoma (PACG) at rest using resting-state functional magnetic resonance imaging (rs-fMRI) technique.Materials and Methods A total of 31 cases of PACG patients diagnosed in the ophthalmology department of Jiangxi Provincial People's Hospital were included. During the same period, 31 sex, age, and duration of education-matched healthy controls (HC) were included in the control group. Whole-brain rs-fMRI scans were performed on each subject to collect PerAF signals. One-sample t-test and two-sample t-test were used to compare PerAF data across and between groups, respectively.Results Compared with HC group, subjects in the PACG patient group had significantly lower PerAF in the left supraparietal gyrus (t=-3.9421, P<0.001), orbital (t=-3.4619, P<0.001), left orbital median frontal gyrus (t=-3.6709, P<0.001), bilateral right median frontal gyrus (t=-3.8257, P<0.001), right inferior frontal gyrus deltoid (t=-3.6708, t=-4.0375, P<0.001); left supramarginal gyrus (t=-3.9570, P<0.001), inferior parietal marginal angular gyrus (t=-3.8230, t=-3.8730, P<0.001), right superior parietal gyrus (t=-4.4581, P<0.001), postcentral gyrus (t=-3.7825, P<0.001), and paracentral lobule (t=-4.0816, P<0.001); right middle temporal gyrus (t=-3.8402, P<0.001); left lingual gyrus (t=-3.5758, P<0.001); left anterior cingulate and paracingulate cingulate gyrus (t=-3.4718, P<0.001), supplementary motor area (t=-3.7209, P<0.001), and right inferior cerebellar area 7b (t=-3.9479, P<0.001) (P<0.001 at voxel level, P<0.05 at cluster level, Gaussian random field corrected).Conclusions Patients with PACG have abnormal PerAF values in multiple brain regions involving primary and higher visual cortex and brain regions associated with visual, emotional, and cognitive regulation.
[Keywords] glaucoma;primary angle-closure glaucoma;resting-state functional magnetic resonance imaging;percent amplitude of fluctuation;magnetic resonance imaging

TANG Qiuyu1   HUANG Binglin2*   HUANG Xin3   XIE Yuyan1   WEI Hanlei1   HUANG Qin1  

1 Graduate School of Jiangxi University of Chinese Medicine, Nanchang 330004, China

2 School of Clinical Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China

3 Department of Ophthalmology, Jiangxi Provincial People's Hospital (the First Affiliated Hospital of Nanchang Medical College), Nanchang 330000, China

Corresponding author: HUANG B L, E-mail: 285217019@qq.com

Conflicts of interest   None.

Received  2023-06-25
Accepted  2023-12-25
DOI: 10.12015/issn.1674-8034.2024.01.015
Cite this article as: TANG Q Y, HUANG B L, HUANG X, et al. Percent amplitude of fluctuation study in primary angle-closure glaucoma based on resting-state fMRI[J]. Chin J Magn Reson Imaging, 2024, 15(1): 95-100. DOI:10.12015/issn.1674-8034.2024.01.015.

[1]
STEIN J D, KHAWAJA A P, WEIZER J S. Glaucoma in adults-screening, diagnosis, and management: a review[J]. JAMA, 2021, 325(2): 164-174. DOI: 10.1001/jama.2020.21899.
[2]
KANG J M, TANNA A P. Glaucoma[J]. Med Clin North Am, 2021, 105(3): 493-510. DOI: 10.1016/j.mcna.2021.01.004.
[3]
DAVIS B M, CRAWLEY L, PAHLITZSCH M, et al. Glaucoma: the retina and beyond[J]. Acta Neuropathol, 2016, 132(6): 807-826. DOI: 10.1007/s00401-016-1609-2.
[4]
POTOP V, COVILTIR V, SCHMITZER S, et al. Ultrasound biomicroscopy in glaucoma assessment[J]. Rom J Ophthalmol, 2021, 65(2): 114-119. DOI: 10.22336/rjo.2021.24.
[5]
MILLER N, LIU Y, KRIVOCHENITSER R, et al. Linking neural and clinical measures of glaucoma with diffusion magnetic resonance imaging (dMRI)[J/OL]. PLoS One, 2019, 14(5): e0217011 [2023-06-24]. https://pubmed.ncbi.nlm.nih.gov/31150402/. DOI: 10.1371/journal.pone.0217011.
[6]
MURPHY M C, CONNER I P, TENG C Y, et al. Retinal structures and visual cortex activity are impaired prior to clinical vision loss in glaucoma[J/OL]. Sci Rep, 2016, 6: 31464 [2023-06-24]. https://pubmed.ncbi.nlm.nih.gov/27510406/. DOI: 10.1038/srep31464.
[7]
LIU D, GAO J W, YOU T, et al. Brain functional network analysis of patients with primary angle-closure glaucoma[J/OL]. Dis Markers, 2022, 2022: 2731007 [2023-06-24]. https://pubmed.ncbi.nlm.nih.gov/35035609/. DOI: 10.1155/2022/2731007.
[8]
WANG R, TANG Z H, LIU T T, et al. Altered spontaneous neuronal activity and functional connectivity pattern in primary angle-closure glaucoma: a resting-state fMRI study[J]. Neurol Sci, 2021, 42(1): 243-251. DOI: 10.1007/s10072-020-04577-1.
[9]
JIANG F, YU C, ZUO M J, et al. Frequency-dependent neural activity in primary angle-closure glaucoma[J/OL]. Neuropsychiatr Dis Treat, 2019, 15: 271-282 [2023-06-24]. https://pubmed.ncbi.nlm.nih.gov/30697052/. DOI: 10.2147/NDT.S187367.
[10]
TONG Y, HUANG X, QI C X, et al. Frequency-dependent alterations in the amplitude of low-frequency fluctuations in patients with iridocyclitis at the resting state[J]. Recent Adv Ophthalmol, 2021, 41(9): 843-847. DOI: 10.13389/j.cnki.rao.2021.0176.
[11]
LUO W J, HU J W, HU S Q. Research progress on the application of resting - state functional magnetic resonance imaging in glaucoma[J]. Int Eye Sci, 2023, 23(1): 67-70. DOI: 10.3980/j.issn.1672-5123.2023.1.13.
[12]
GAO Y J, WANG X, XIONG Z Y, et al. Abnormal fractional amplitude of low-frequency fluctuation as a potential imaging biomarker for first-episode major depressive disorder: a resting-state fMRI study and support vector machine analysis[J/OL]. Front Neurol, 2021, 12: 751400 [2023-06-24]. https://pubmed.ncbi.nlm.nih.gov/34912284/. DOI: 10.3389/fneur.2021.751400.
[13]
SONG Y, XU W W, CHEN S S, et al. Functional MRI-specific alterations in salience network in mild cognitive impairment: an ALE meta-analysis[J/OL]. Front Aging Neurosci, 2021, 13: 695210 [2023-06-24]. https://pubmed.ncbi.nlm.nih.gov/34381352/. DOI: 10.3389/fnagi.2021.695210.
[14]
JIA X Z, SUN J W, JI G J, et al. Percent amplitude of fluctuation: a simple measure for resting-state fMRI signal at single voxel level[J/OL]. PLoS One, 2020, 15(1): e0227021 [2023-06-24]. https://pubmed.ncbi.nlm.nih.gov/31914167/. DOI: 10.1371/journal.pone.0227021.
[15]
XU K, WEI Y C, ZHANG S M, et al. Percentage amplitude of fluctuation and structural covariance changes of subjective cognitive decline in patients: a multimodal imaging study[J/OL]. Front Neurosci, 2022, 16: 888174 [2023-06-24]. https://pubmed.ncbi.nlm.nih.gov/35937877/. DOI: 10.3389/fnins.2022.888174.
[16]
YANG Y C, LI Q Y, CHEN M J, et al. Investigation of changes in retinal detachment-related brain region activities and functions using the percent amplitude of fluctuation method: a resting-state functional magnetic resonance imaging study[J/OL]. Neuropsychiatr Dis Treat, 2021, 17: 251-260 [2023-06-24]. https://pubmed.ncbi.nlm.nih.gov/33536757/. DOI: 10.2147/NDT.S292132.
[17]
HU Q H, CHEN J, KANG M, et al. Abnormal percent amplitude of fluctuation changes in patients with monocular blindness: a resting-state functional magnetic resonance imaging study[J/OL]. Front Psychiatry, 2022, 13: 942905 [2023-06-24]. https://pubmed.ncbi.nlm.nih.gov/36353573/. DOI: 10.3389/fpsyt.2022.942905.
[18]
YU C, LI C Q, GE Q M, et al. Altered resting state functional activity of brain regions in neovascular glaucoma: a resting-state functional magnetic resonance imaging study[J/OL]. Front Neurosci, 2021, 15: 800466 [2023-06-24]. https://pubmed.ncbi.nlm.nih.gov/34966259/. DOI: 10.3389/fnins.2021.800466.
[19]
Glaucoma Group of the Chinese Medical Association Ophthalmology Branch. Expert consensus on diagnosis and treatment of primary angle-closure glaucoma in China (2019)[J]. Chin J Ophthalmol, 2019, 55(5): 325-328. DOI: 10.3760/cma.j.issn.0412-4081.2019.05.002.
[20]
STRETTON J, THOMPSON P J. Frontal lobe function in temporal lobe epilepsy[J]. Epilepsy Res, 2012, 98(1): 1-13. DOI: 10.1016/j.eplepsyres.2011.10.009.
[21]
CATANI M. The anatomy of the human frontal lobe[J/OL]. Handb Clin Neurol, 2019, 163: 95-122 [2023-06-24]. https://pubmed.ncbi.nlm.nih.gov/31590750/. DOI: 10.1016/B978-0-12-804281-6.00006-9.
[22]
GRACITELLI C P, ABE R Y, DINIZ-FILHO A, et al. Ophthalmology issues in schizophrenia[J/OL]. Curr Psychiatry Rep, 2015, 17(5): 28 [2023-06-24]. https://pubmed.ncbi.nlm.nih.gov/25773224/. DOI: 10.1007/s11920-015-0569-x.
[23]
TSILIS A G, TSILIDIS K K, PELIDOU S H, et al. Systematic review of the association between Alzheimer's disease and chronic glaucoma[J/OL]. Clin Ophthalmol, 2014, 8: 2095-2104 [2023-06-24]. https://pubmed.ncbi.nlm.nih.gov/25342880/. DOI: 10.2147/OPTH.S69534.
[24]
WOSTYN P, VAN DAM D, DE DEYN P P. Alzheimer's disease and glaucoma: look-alike neurodegenerative diseases[J]. Alzheimers Dement, 2019, 15(4): 600-601. DOI: 10.1016/j.jalz.2018.12.012.
[25]
DINIZ-FILHO A, DELANO-WOOD L, DAGA F B, et al. Association between neurocognitive decline and visual field variability in glaucoma[J]. JAMA Ophthalmol, 2017, 135(7): 734-739. DOI: 10.1001/jamaophthalmol.2017.1279.
[26]
YANG D, GANG B Z. The parietal lobe and cognitive impairments[J]. Med Recapitul, 2015, 21(22): 4106-4108. DOI: 10.3969/j.issn.1006-2084.2015.22.028.
[27]
CHEN L L, LI S H, CAI F Q, et al. Altered functional connectivity density in primary angle-closure glaucoma patients at resting-state[J]. Quant Imaging Med Surg, 2019, 9(4): 603-614. DOI: 10.21037/qims.2019.04.13.
[28]
LAKSHMANAN Y, GEORGE R J. Stereoacuity in mild, moderate and severe glaucoma[J]. Ophthalmic Physiol Opt, 2013, 33(2): 172-178. DOI: 10.1111/opo.12021.
[29]
KWON M, LIU R, PATEL B N, et al. Slow reading in glaucoma: is it due to the shrinking visual span in central vision?[J]. Invest Ophthalmol Vis Sci, 2017, 58(13): 5810-5818. DOI: 10.1167/iovs.17-22560.
[30]
ALGAZE A, ROBERTS C, LEGUIRE L, et al. Functional magnetic resonance imaging as a tool for investigating amblyopia in the human visual cortex: a pilot study[J]. J AAPOS, 2002, 6(5): 300-308. DOI: 10.1067/mpa.2002.124902.
[31]
DAS T K, KUMAR J, FRANCIS S, et al. Parietal lobe and disorganisation syndrome in schizophrenia and psychotic bipolar disorder: a bimodal connectivity study[J/OL]. Psychiatry Res Neuroimaging, 2020, 303: 111139 [2023-06-24]. https://pubmed.ncbi.nlm.nih.gov/32707490/. DOI: 10.1016/j.pscychresns.2020.111139.
[32]
VISSER M, JEFFERIES E, EMBLETON K V, et al. Both the middle temporal gyrus and the ventral anterior temporal area are crucial for multimodal semantic processing: distortion-corrected fMRI evidence for a double gradient of information convergence in the temporal lobes[J]. J Cogn Neurosci, 2012, 24(8): 1766-1778. DOI: 10.1162/jocn_a_00244.
[33]
XU J P, LYU H Q, LI T, et al. Delineating functional segregations of the human middle temporal gyrus with resting-state functional connectivity and coactivation patterns[J]. Hum Brain Mapp, 2019, 40(18): 5159-5171. DOI: 10.1002/hbm.24763.
[34]
YE Y Q, ZENG X J, JIANG F, et al. A voxel-based morphometric 3.0 T MRI study in primary angle-closure glaucoma[J]. J Clin Radiol, 2020, 39(6): 1059-1063. DOI: 10.13437/j.cnki.jcr.2020.06.007.
[35]
STEFAN C, RUSU D N, NENCIU A, et al. Color vision in glaucoma[J]. Oftalmologia, 2005, 49(1): 17-21.
[36]
POKAL U, SWATHI N, RAJALAKSHMI A R, et al. Comparing retinal sensitivities on blue-on-yellow and green-on-yellow perimetry in glaucoma suspects[J]. Indian J Ophthalmol, 2022, 70(10): 3550-3555. DOI: 10.4103/ijo.IJO_944_22.
[37]
HA Y W, JANG H, KOH S B, et al. Reduced brain subcortical volumes in patients with glaucoma: a pilot neuroimaging study using the region-of-interest-based approach[J/OL]. BMC Neurol, 2022, 22(1): 277 [2023-06-24]. https://pubmed.ncbi.nlm.nih.gov/35879747/. DOI: 10.1186/s12883-022-02807-x.
[38]
GLOVER G H. Overview of functional magnetic resonance imaging[J]. Neurosurg Clin N Am, 2011, 22(2): 133-139. DOI: 10.1016/j.nec.2010.11.001.
[39]
BARONCELLI L, LUNGHI C. Neuroplasticity of the visual cortex: in sickness and in health[J/OL]. Exp Neurol, 2021, 335: 113515 [2023-06-24]. https://pubmed.ncbi.nlm.nih.gov/33132181/. DOI: 10.1016/j.expneurol.2020.113515.
[40]
ROLLS E T. The cingulate cortex and limbic systems for emotion, action, and memory[J]. Brain Struct Funct, 2019, 224(9): 3001-3018. DOI: 10.1007/s00429-019-01945-2.
[41]
SONG Y W, MU K T, WANG J M, et al. Altered spontaneous brain activity in primary open angle glaucoma: a resting-state functional magnetic resonance imaging study[J/OL]. PLoS One, 2014, 9(2): e89493 [2023-06-24]. https://pubmed.ncbi.nlm.nih.gov/24586822/. DOI: 10.1371/journal.pone.0089493.
[42]
SANG L, QIN W, LIU Y, et al. Resting-state functional connectivity of the vermal and hemispheric subregions of the cerebellum with both the cerebral cortical networks and subcortical structures[J]. Neuroimage, 2012, 61(4): 1213-1225. DOI: 10.1016/j.neuroimage.2012.04.011.
[43]
HU J J, JIANG N, CHEN J, et al. Altered regional homogeneity in patients with congenital blindness: a resting-state functional magnetic resonance imaging study[J/OL]. Front Psychiatry, 2022, 13: 925412 [2023-06-24]. https://pubmed.ncbi.nlm.nih.gov/35815017/. DOI: 10.3389/fpsyt.2022.925412.

PREV Value of combining radiomics and deep-learning with hematological inflammatory markers in predicting the prognosis of glioma
NEXT Study of diffusion tensor imaging parameters in foraminal cervical nerve of healthy volunteers and fiber bundle reconstruction
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn