Share:
Share this content in WeChat
X
Clinical Article
Value of ZOOM-mDixon-derived T2*/R2* imaging in preoperative predicting lymph node metastasis in pancreatic ductal adenocarcinoma
LIU Fuyao  ZHANG Jinggang  CHEN Jie  DU Yanan  LI Minglei 

Cite this article as: LIU F Y, ZHANG J G, CHEN J, et al. Value of ZOOM-mDixon-derived T2*/R2* imaging in preoperative predicting lymph node metastasis in pancreatic ductal adenocarcinoma[J]. Chin J Magn Reson Imaging, 2024, 15(1): 119-124. DOI:10.12015/issn.1674-8034.2024.01.019.


[Abstract] Objective To investigate the feasibility of using quantitative T2*/R2* values derived from the ZOOM-mDixon sequence for evaluating lymph node metastasis in pancreatic ductal adenocarcinoma.Materials and Methods A retrospective analysis was conducted on 59 patients with pathologically confirmed pancreatic ductal adenocarcinoma, including 31 patients with lymph node metastasis (LNM) and 28 patients without lymph node metastasis (nLNM). All patients underwent preoperative MRI scans, which included the ZOOM-mDixon sequence. The analysis involved examining clinical data, such as age and preoperative carbohydrate antigen (CA)19-9 levels, routine radiological features including location and morphology, and T2*/R2* values. Intra-class correlation coefficients (ICC) were used to evaluate repeatability, while U-tests, t-tests, or χ2 tests were used to compare differences between the two groups. The receiving operator characteristic (ROC) curve was plotted, and the area under curve (AUC) was calculated to assess the diagnostic performance of quantitative indicators.Results The inter-and intra-group ICC values for T2*/R2* were excellent, ranging from 0.83 to 0.97. No statistically significant differences were observed in age, tumor morphology, short diameter of the tumor, tumor location, preoperative CA19-9, CA125, carcinoma embryonic antigen (CEA) levels between the LNM and nLNM groups. However, gender, long diameter of the lesion, and lesion boundary exhibited statistically significant differences (P values were 0.023, 0.048, 0.040, respectively). There were significant statistical differences in the T2* and R2* values between the two groups (P values <0.05). Compared with the nLNM group, the LNM group exhibited a smaller R2* value [17.63 (15.10, 22.50) /s vs. 24.00 (20.00, 28.30) /s] and a higher T2* value [(63.77±13.95) ms vs. (49.71±12.67) ms]. The AUCs for T2*/R2* values in predicting lymph node metastasis of pancreatic cancer were 0.775 and 0.766, respectively.Conclusions Quantitative T2*/R2* imaging derived from the ZOOM-mDixon sequences can predict preoperative lymph node metastasis of pancreatic ductal adenocarcinoma, offering valuable insights for clinical treatment decisions.
[Keywords] pancreatic ductal adenocarcinoma;water-fat separation technique;magnetic resonance imaging;lymph node metastasis;preoperativ prediction

LIU Fuyao   ZHANG Jinggang*   CHEN Jie   DU Yanan   LI Minglei  

Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou 213003, China

Corresponding author: ZHANG J G, E-mail: yanqing@126.com

Conflicts of interest   None.

Received  2023-07-20
Accepted  2023-12-26
DOI: 10.12015/issn.1674-8034.2024.01.019
Cite this article as: LIU F Y, ZHANG J G, CHEN J, et al. Value of ZOOM-mDixon-derived T2*/R2* imaging in preoperative predicting lymph node metastasis in pancreatic ductal adenocarcinoma[J]. Chin J Magn Reson Imaging, 2024, 15(1): 119-124. DOI:10.12015/issn.1674-8034.2024.01.019.

[1]
SIEGEL R L, MILLER K D, JEMAL A. Cancer statistics, 2020[J]. CA Cancer J Clin, 2020, 70(1): 7-30. DOI: 10.3322/caac.21590.
[2]
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
[3]
HALBROOK C J, LYSSIOTIS C A, DI MAGLIANO M P, et al. Pancreatic cancer: advances and challenges[J]. Cell, 2023, 186(8): 1729-1754. DOI: 10.1016/j.cell.2023.02.014.
[4]
DBOUK M, KATONA B W, BRAND R E, et al. The multicenter cancer of pancreas screening study: impact on stage and survival[J]. J Clin Oncol, 2022, 40(28): 3257-3266. DOI: 10.1200/JCO.22.00298.
[5]
SPRINGFELD C, FERRONE C R, KATZ M H G, et al. Neoadjuvant therapy for pancreatic cancer[J]. Nat Rev Clin Oncol, 2023, 20(5): 318-337. DOI: 10.1038/s41571-023-00746-1.
[6]
STROBEL O, NEOPTOLEMOS J, JÄGER D, et al. Optimizing the outcomes of pancreatic cancer surgery[J]. Nat Rev Clin Oncol, 2019, 16(1): 11-26. DOI: 10.1038/s41571-018-0112-1.
[7]
KOMO T, MURAKAMI Y, KONDO N, et al. Prognostic impact of para-aortic lymph node micrometastasis in pancreatic ductal adenocarcinoma[J]. Ann Surg Oncol, 2016, 23(6): 2019-2027. DOI: 10.1245/s10434-016-5120-8.
[8]
WENNERBLOM J, SAKSENA P, JÖNSSON C, et al. Lymph node 8a as a prognostic marker for poorer prognosis in pancreatic and periampullary carcinoma[J]. Scand J Gastroenterol, 2018, 53(2): 225-230. DOI: 10.1080/00365521.2017.1417474.
[9]
DELL'AQUILA E, FULGENZI C A M, MINELLI A, et al. Prognostic and predictive factors in pancreatic cancer[J]. Oncotarget, 2020, 11(10): 924-941. DOI: 10.18632/oncotarget.27518.
[10]
OZONO Y, KAWAKAMI H, UCHIYAMA N, et al. Current status and issues in genomic analysis using EUS-FNA/FNB specimens in hepatobiliary-pancreatic cancers[J]. J Gastroenterol, 2023, 58(11): 1081-1093. DOI: 10.1007/s00535-023-02037-z.
[11]
QIN X Z, RAN T J, CHEN Y F, et al. Artificial intelligence in endoscopic ultrasonography-guided fine-needle aspiration/biopsy (EUS-FNA/B) for solid pancreatic lesions: opportunities and challenges[J/OL]. Diagnostics, 2023, 13(19): 3054 [2023-12-12]. https://pubmed.ncbi.nlm.nih.gov/37835797/. DOI: 10.3390/diagnostics13193054.
[12]
TERASAWA H, MATSUMOTO K, TANAKA T, et al. Cysts or necrotic components in pancreatic ductal adenocarcinoma is associated with the risk of EUS-FNA/B complications including needle tract seeding[J]. Pancreatology, 2023, 23(8): 988-995. DOI: 10.1016/j.pan.2023.10.018.
[13]
CHE F, XU Q, LI Q, et al. Radiomics signature: a potential biomarker for β-arrestin1 phosphorylation prediction in hepatocellular carcinoma[J]. World J Gastroenterol, 2022, 28(14): 1479-1493. DOI: 10.3748/wjg.v28.i14.1479.
[14]
MIRZA-AGHAZADEH-ATTARI M, MADANI S P, SHAHBAZIAN H, et al. Predictive role of radiomics features extracted from preoperative cross-sectional imaging of pancreatic ductal adenocarcinoma in detecting lymph node metastasis: a systemic review and meta-analysis[J]. Abdom Radiol, 2023, 48(8): 2570-2584. DOI: 10.1007/s00261-023-03940-y.
[15]
MENG X, TIAN S F, MA C J, et al. APTw combined with mDixon-Quant imaging to distinguish the differentiation degree of cervical squamous carcinoma[J/OL]. Front Oncol, 2023, 13: 1105867 [2023-12-09]. https://pubmed.ncbi.nlm.nih.gov/36761975/. DOI: 10.3389/fonc.2023.1105867.
[16]
SUN M T, WANG L L, WANG C, et al. Quantitative analysis of whole-body MRI for accessing the degree of diffuse infiltration patterns and identifying high risk cases of newly diagnosed multiple myeloma[J/OL]. J Magn Reson Imaging, 2023 [2023-12-08]. https://pubmed.ncbi.nlm.nih.gov/37675995/. DOI: 10.1002/jmri.28962.
[17]
TANG R, TANG G Y, HUA T, et al. mDIXON-Quant technique diagnostic accuracy for assessing bone mineral density in male adult population[J/OL]. BMC Musculoskelet Disord, 2023, 24(1): 125 [2023-12-08]. https://pubmed.ncbi.nlm.nih.gov/36788513/. DOI: 10.1186/s12891-023-06225-z.
[18]
WANG Y, JU Y, AN Q, et al. mDIXON-Quant for differentiation of renal damage degree in patients with chronic kidney disease[J/OL]. Front Endocrinol, 2023, 14: 1187042 [2023-12-07]. https://pubmed.ncbi.nlm.nih.gov/37547308/.10.3389/fendo.2023.1187042. DOI: 10.3389/fendo.2023.1187042.
[19]
LIU R J, JIANG G H, GAO P, et al. Non-invasive amide proton transfer imaging and ZOOM diffusion-weighted imaging in differentiating benign and malignant thyroid micronodules[J/OL]. Front Endocrinol, 2018, 9: 747 [2023-10-07]. https://pubmed.ncbi.nlm.nih.gov/30631303/. DOI: 10.3389/fendo.2018.00747.
[20]
YANG L, LIU Y, KONG X C, et al. Diffusion tensor magnetic resonance imaging of the postoperative spine with metallic implants[J/OL]. NMR Biomed, 2020, 33(8): e4321 [2023-11-11]. https://pubmed.ncbi.nlm.nih.gov/32348023/. DOI: 10.1002/nbm.4321.
[21]
WEISS S, NEJAD-DAVARANI S, EGGERS H, et al. A novel and rapid approach to estimate patient-specific distortions based on mDIXON MRI[J/OL]. Phys Med Biol, 2019, 64(15): 155002 [2023-10-01]. https://pubmed.ncbi.nlm.nih.gov/31216529/. DOI: 10.1088/1361-6560/ab2b0a.
[22]
ZOU L Q, ZHANG H, WANG Q, et al. Simultaneous liver steatosis, fibrosis and iron deposition quantification with mDixon quant based on radiomics analysis in a rabbit model[J]. Magn Reson Imaging, 2022, 94: 36-42. DOI: 10.1016/j.mri.2022.08.013.
[23]
JU Y, WANG Y, LUO R N, et al. Evaluation of renal function in chronic kidney disease (CKD) by mDIXON-Quant and Amide Proton Transfer weighted (APTw) imaging[J]. Magn Reson Imaging, 2023, 103: 102-108. DOI: 10.1016/j.mri.2023.07.005.
[24]
CHENG J M, LUO W X, PAN J, et al. Renal ectopic lipid deposition in rats with early-stage diabetic nephropathy evaluated by the MR mDixon-Quant technique: association with the expression of SREBP-1 and PPARα in renal tissue[J]. Quant Imaging Med Surg, 2023, 13(7): 4504-4513. DOI: 10.21037/qims-22-1167.
[25]
MAGGI L, MOSCATELLI M, FRANGIAMORE R, et al. Quantitative muscle MRI protocol as possible biomarker in Becker muscular dystrophy[J]. Clin Neuroradiol, 2021, 31(1): 257-266. DOI: 10.1007/s00062-019-00875-0.
[26]
D'ASSIGNIES G, PAISANT A, BARDOU-JACQUET E, et al. Non-invasive measurement of liver iron concentration using 3-Tesla magnetic resonance imaging: validation against biopsy[J]. Eur Radiol, 2018, 28(5): 2022-2030. DOI: 10.1007/s00330-017-5106-3.
[27]
ZHANG Y, ZHOU Z, WANG C, et al. Reliability of measuring the fat content of the lumbar vertebral marrow and paraspinal muscles using MRI mDIXON-Quant sequence[J]. Diagn Interv Radiol, 2018, 24(5): 302-307. DOI: 10.5152/dir.2018.17323.
[28]
LI J F, WANG Y J, ZHANG X S, et al. Associations of muscle size and fatty infiltration with bone mineral density of the proximal femur bone[J/OL]. Front Endocrinol, 2022, 13: 990487 [2023-10-07]. https://pubmed.ncbi.nlm.nih.gov/36237187/. DOI: 10.3389/fendo.2022.990487.
[29]
ALIZADEH M, POPLAWSKI M M, FISHER J, et al. Zonally magnified oblique multislice and non-zonally magnified oblique multislice DWI of the cervical spinal cord[J]. AJNR Am J Neuroradiol, 2018, 39(8): 1555-1561. DOI: 10.3174/ajnr.A5703.
[30]
KIM L H, LEE E H, GALVEZ M, et al. Reduced field of view echo-planar imaging diffusion tensor MRI for pediatric spinal tumors[J]. J Neurosurg Spine, 2019: 1-9. DOI: 10.3171/2019.4.SPINE19178.
[31]
XIN J Y, GAO S S, LIU J G, et al. The value of ESWAN in diagnosis and differential diagnosis of prostate cancer: preliminary study[J]. Magn Reson Imaging, 2017, 44: 26-31. DOI: 10.1016/j.mri.2017.08.002.
[32]
DETIGER S E, HOLEWIJN R M, HOOGENDOORN R J, et al. MRI T2* mapping correlates with biochemistry and histology in intervertebral disc degeneration in a large animal model[J]. Eur Spine J, 2015, 24(9): 1935-1943. DOI: 10.1007/s00586-014-3498-1.
[33]
SEO M, RYU J K, JAHNG G H, et al. Estimation of T2* relaxation time of breast cancer: correlation with clinical, imaging and pathological features[J]. Korean J Radiol, 2017, 18(1): 238-248. DOI: 10.3348/kjr.2017.18.1.238.
[34]
HISANAGA S, AOKI T, SHIMAJIRI S, et al. Peritumoral fat content correlates with histological prognostic factors in breast carcinoma: a study using iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL)[J]. Magn Reson Med Sci, 2021, 20(1): 28-33. DOI: 10.2463/mrms.mp.2019-0201.
[35]
XIA C F, DONG X S, LI H, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants[J]. Chin Med J, 2022, 135(5): 584-590. DOI: 10.1097/CM9.0000000000002108.
[36]
DAVID M, LEPAGE C, JOUVE J L, et al. Management and prognosis of pancreatic cancer over a 30-year period[J]. Br J Cancer, 2009, 101(2): 215-218. DOI: 10.1038/sj.bjc.6605150.
[37]
KUNISAKI C, MAKINO H, AKIYAMA H, et al. Clinical significance of the metastatic lymph-node ratio in early gastric cancer[J]. J Gastrointest Surg, 2008, 12(3): 542-549. DOI: 10.1007/s11605-007-0239-3.
[38]
HAENO H, GONEN M, DAVIS M B, et al. Computational modeling of pancreatic cancer reveals kinetics of metastasis suggesting optimum treatment strategies[J]. Cell, 2012, 148(1/2): 362-375. DOI: 10.1016/j.cell.2011.11.060.
[39]
YAMADA M, SUGIURA T, OKAMURA Y, et al. Clinical implication of node-negative resectable pancreatic cancer[J]. Ann Surg Oncol, 2021, 28(4): 2257-2264. DOI: 10.1245/s10434-020-09543-x.
[40]
CAI J, CHEN H D, LU M, et al. Advances in the epidemiology of pancreatic cancer: trends, risk factors, screening, and prognosis[J]. Cancer Lett, 2021, 520: 1-11. DOI: 10.1016/j.canlet.2021.06.027.
[41]
SINGH S, TANG S J, SREENARASIMHAIAH J, et al. The clinical utility and limitations of serum carbohydrate antigen (CA19-9) as a diagnostic tool for pancreatic cancer and cholangiocarcinoma[J]. Dig Dis Sci, 2011, 56(8): 2491-2496. DOI: 10.1007/s10620-011-1709-8.
[42]
MENG Q C, SHI S, LIANG C, et al. Diagnostic and prognostic value of carcinoembryonic antigen in pancreatic cancer: a systematic review and meta-analysis[J]. Onco Targets Ther, 2017, 10: 4591-4598. DOI: 10.2147/OTT.S145708.

PREV Evaluation and prediction of therapeutic effect of hepatocellular carcinoma after TACE based on contrast enhanced MRI histogram analysis
NEXT Preoperative prediction of pathological grading in bladder cancer by deep residual network model based on T2WI
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn