Share:
Share this content in WeChat
X
Clinical Article
The value of APT imaging in evaluating the therapeutic efficacy of concurrent chemoradiotherapy for cervical cancer
SHI Tianliang  YANG Chongshuang  LIU Yuanzao  LUO Yingbin  YANG Changyi  KUANG Guangxian  YAO Qing 

Cite this article as: SHI T L, YANG C S, LIU Y Z, et al. The value of APT imaging in evaluating the therapeutic efficacy of concurrent Chemoradiotherapy for cervical cancer[J]. Chin J Magn Reson Imaging, 2024, 15(1): 132-136. DOI:10.12015/issn.1674-8034.2024.01.021.


[Abstract] Objective To explore the value of amide proton transfer (APT) imaging in evaluating the efficacy of concurrent chemoradiotherapy (CCRT) for cervical cancer.Material and Methods A retrospective analysis was conducted on 27 patients with cervical cancer confirmed by pathology. The efficacy of CCRT was evaluated based on the evaluation criteria for solid tumor efficacy. Complete remission (CR) and partial remission (PR) were included in the remission group, while disease stability (SD) and disease progression (PD) were included in the non-remission group. The values of apparent diffusion coefficient (ADC) and ATP of the lesion area were compared and analyzed before and after CCRT, as well as in the remission and non-remission groups. The correlation between ADC value, APT value, and CCRT efficacy were analyzed by using Pearson correlation analysis.Results After CCRT, there were 3 cases of CR (11.11%), 16 cases of PR (59.26%) and 8 cases of SD (29.63%) in 27 patients with cervical cancer. The local control rate was 100.00%. Compared with before CCRT, the ADC value of the lesion after CCRT increased [(0.89±0.06)×10-3 mm2/s vs. (1.07±0.07)×10-3 mm2/s, P<0.05] and the APT value decreased significantly (3.30%±0.05% vs. 3.07%±0.07%, P<0.05). Before CCRT, the values of ADC and APT in the remission group were higher than those in the non-remission group, and the difference was not statistically significant (P>0.05); After CCRT, the ADC value of the remission group was higher than that of the non-remission group [(1.10±0.06)×10-3 mm2/s vs. (1.01±0.04)×10-3 mm2/s, P<0.05], while the APT value of the remission group was lower than that of the non-remission group (3.05%±0.06% vs. 3.12%±0.07%, P<0.05). There is a significant negative correlation between the ADC value after CCRT and the efficacy of CCRT (r=-0.61, 95% CI: -0.82--0.39, P<0.01), while there is a significant positive correlation between APT value and CCRT efficacy (r=0.50, 95% CI: 0.20-0.76, P=0.01).Conclusions CCRT for cervical cancer has a good therapeutic effect. The APT value is positively correlated with the CCRT effect and an effective imaging marker for reflecting the efficacy of CCRT in cervical cancer.
[Keywords] cervical cancer;magnetic resonance imaging;amide proton transfer imaging;apparent diffusion coefficient;chemoradiotherapy;efficacy evaluation

SHI Tianliang1   YANG Chongshuang1*   LIU Yuanzao1   LUO Yingbin1   YANG Changyi1   KUANG Guangxian1   YAO Qing2  

1 Department of Radiology, Tongren People's Hospital, Tongren 554300, China

2 Department of Cancer, Tongren People's Hospital, Tongren 554300, China

Corresponding author: YANG C S, E-mail: ycshuang68@163.com

Conflicts of interest   None.

Received  2023-07-05
Accepted  2024-01-04
DOI: 10.12015/issn.1674-8034.2024.01.021
Cite this article as: SHI T L, YANG C S, LIU Y Z, et al. The value of APT imaging in evaluating the therapeutic efficacy of concurrent Chemoradiotherapy for cervical cancer[J]. Chin J Magn Reson Imaging, 2024, 15(1): 132-136. DOI:10.12015/issn.1674-8034.2024.01.021.

[1]
XIA C F, DONG X S, LI H, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants[J]. Chin Med J, 2022, 135(5): 584-590. DOI: 10.1097/CM9.0000000000002108.
[2]
BHATLA N, AOKI D, SHARMA D N, et al. Cancer of the cervix uteri: 2021 update[J]. Int J Gynaecol Obstet, 2021, 155(Suppl 1): 28-44. DOI: 10.1002/ijgo.13865.
[3]
CHARGARI C, PEIGNAUX K, ESCANDE A, et al. Radiotherapy of cervical cancer[J]. Cancer Radiother, 2022, 26(1/2): 298-308. DOI: 10.1016/j.canrad.2021.11.009.
[4]
LYNG H, VORREN A O, SUNDFØR K, et al. Intra- and intertumor heterogeneity in blood perfusion of human cervical cancer before treatment and after radiotherapy[J]. Int J Cancer, 2001, 96(3): 182-190. DOI: 10.1002/ijc.1019.
[5]
BOWEN S R, YUH W T C, HIPPE D S, et al. Tumor radiomic heterogeneity: Multiparametric functional imaging to characterize variability and predict response following cervical cancer radiation therapy[J]. J Magn Reson Imaging, 2018, 47(5): 1388-1396. DOI: 10.1002/jmri.25874.
[6]
CHEN J Z, CHEN C Z, ZHAN Y Z, et al. Heterogeneity of IFN-mediated responses and tumor immunogenicity in patients with cervical cancer receiving concurrent chemoradiotherapy[J]. Clin Cancer Res, 2021, 27(14): 3990-4002. DOI: 10.1158/1078-0432.CCR-20-4521.
[7]
DANG J, YAO Y T, TAN X F, et al. Concordance between metabolic tumor volume by 18F-FDG PET/CT and MRI tumor volume in cervical squamous cell carcinoma[J]. J Cancer Contr Treat, 2022, 35(10): 934-938. DOI: 10.3969/j.issn.1674-0904.2022.10.008.
[8]
LAW B K H, KING A D, AI Q Y, et al. Head and neck tumors: amide proton transfer MRI[J]. Radiology, 2018, 288(3): 782-790. DOI: 10.1148/radiol.2018171528.
[9]
MILOT L. Amide proton transfer-weighted MRI: insight into cancer cell biology[J]. Radiology, 2022, 305(1): 135-136. DOI: 10.1148/radiol.221376.
[10]
XU Z W, KE C, LIU J, et al. Diagnostic performance between MR amide proton transfer (APT) and diffusion kurtosis imaging (DKI) in glioma grading and IDH mutation status prediction at 3 T[J/OL]. Eur J Radiol, 2021, 134: 109466 [2023-07-04]. https://pubmed.ncbi.nlm.nih.gov/33307459/. DOI: 10.1016/j.ejrad.2020.109466.
[11]
OCHIAI R, MUKUDA N, YUNAGA H, et al. Amide proton transfer imaging in differentiation of type Ⅱ and type I endometrial carcinoma: a pilot study[J]. Jpn J Radiol, 2022, 40(2): 184-191. DOI: 10.1007/s11604-021-01197-3.
[12]
HU W J, LIU A L, CHEN L H, et al. The value of amide proton transfer imaging combined with T2-mapping for differentiating prostate cancer from benign prostatic hyperplasia[J]. Radiol Pract, 2022, 37(11): 1416-1421. DOI: 10.13609/j.cnki.1000-0313.2022.11.015.
[13]
TIAN S F, CHEN A L, LI Y, et al. The combined application of amide proton transfer imaging and diffusion kurtosis imaging for differentiating stage Ia endometrial carcinoma and endometrial polyps[J]. Magn Reson Imaging, 2023, 99: 67-72. DOI: 10.1016/j.mri.2022.12.026.
[14]
WANG H J, CAI Q, HUANG Y P, et al. Amide proton transfer-weighted MRI in predicting histologic grade of bladder cancer[J/OL]. Radiology, 2022, 305(1): 127-134. DOI: 10.1148/radiol.211804.
[15]
SONG Q L, TIAN S F, MA C J, et al. Amide proton transfer weighted imaging combined with dynamic contrast-enhanced MRI in predicting lymphovascular space invasion and deep stromal invasion of IB1-IIA1 cervical cancer[J/OL]. Front Oncol, 2022, 12: 916846 [2023-07-04]. https://pubmed.ncbi.nlm.nih.gov/36172148/. DOI: 10.3389/fonc.2022.916846.
[16]
CHEN Y B, ZHAO B Q, ZHU C H, et al. Assessing the predictability of the H3K27M status in diffuse glioma patients using frequency importance analysis on chemical exchange saturation transfer MRI[J]. Magn Reson Imaging, 2023, 103: 54-60. DOI: 10.1016/j.mri.2023.07.003.
[17]
YE Y F, XU Z W, ZENG W H, et al. The value of amide proton transfer imaging in predicting the effect of nasopharyngeal carcinoma after chemoradiotherapy[J]. Chin J Magn Reson Imag, 2020, 11(8): 635-640. DOI: 10.12015/issn.1674-8034.2020.08.008.
[18]
RABINOVITCH R, MOUGHAN J, VICINI F, et al. Long-term update of NRG oncology RTOG 0319: a phase 1 and 2Trial to evaluate 3-dimensional conformal radiation therapy confined to the region of the Lumpectomy cavity for stage Ⅰ and Ⅱ Breast Carcinoma[J]. Int J Radiat Oncol Biol Phys, 2016, 96(5): 1054-1059. DOI: 10.1016/j.ijrobp.2016.08.042.
[19]
XU W N, YU L J, YANG Z G, et al. Comparison of PERCIST1.0 and RECIST1.1 for the evaluation of concurrent chemoradiotherapy response in advanced cervical cancer[J]. J China Clin Med Imag, 2017, 28(10): 747-751. DOI: 10.3969/j.issn.1008-1062.2017.10.013.
[20]
ZHAO Q D, CAO X, LI X D, et al. Value of MRI in evaluating the curative effect of radiotherapy for cervical cancer[J]. Chin J CT MRI, 2021, 19(10): 121-123, 143. DOI: 103969/j.issn.1672-5131.2021.10.039.
[21]
RE G L, CUCINELLA G, ZACCARIA G, et al. Role of MRI in the assessment of cervical cancer[J]. Semin Ultrasound CT MR, 2023, 44(3): 228-237. DOI: 10.1053/j.sult.2023.03.010.
[22]
DENG X J, LIU M L, ZHOU Q, et al. Predicting treatment response to concurrent chemoradiotherapy in squamous cell carcinoma of the cervix using amide proton transfer imaging and intravoxel incoherent motion imaging[J]. Diagn Interv Imaging, 2022, 103(12): 618-624. DOI: 10.1016/j.diii.2022.09.001.
[23]
ZHENG X, SHEN F M, ZHENG D C, et al. The application of magnetic resonance diffusion kurtosis imaging in efficacy evaluation of early radiotherapy of cervical carcinoma[J]. Chin J Magn Reson Imag, 2023, 14(2): 68-72, 82. DOI: 10.12015/issn.1674-8034.2023.02.012.
[24]
ZHANG W J, LU N, HE H Q, et al. Application of synthetic magnetic resonance imaging and DWI for evaluation of prognostic factors in cervical carcinoma: a prospective preliminary study[J/OL]. Br J Radiol, 2023, 96(1141): 20220596 [2023-07-04]. https://pubmed.ncbi.nlm.nih.gov/36341699/. DOI: 10.1259/bjr.20220596.
[25]
MATANI H, PATEL A K, HORNE Z D, et al. Utilization of functional MRI in the diagnosis and management of cervical cancer[J/OL]. Front Oncol, 2022, 12: 1030967 [2023-07-04]. https://pubmed.ncbi.nlm.nih.gov/36439416/. DOI: 10.3389/fonc.2022.1030967.
[26]
YOSHIDA S, TAKAHARA T, KWEE T C, et al. DWI as an imaging biomarker for bladder cancer[J]. AJR Am J Roentgenol, 2017, 208(6): 1218-1228. DOI: 10.2214/AJR.17.17798.
[27]
EXNER M, KÜHN A, STUMPP P, et al. Value of diffusion-weighted MRI in diagnosis of uterine cervical cancer: a prospective study evaluating the benefits of DWI compared to conventional MR sequences in a 3T environment[J]. Acta Radiol, 2016, 57(7): 869-877. DOI: 10.1177/0284185115602146.
[28]
KUMAR R, KALA P, NARAYANAN G S, et al. Evaluation and evolution of apparent diffusion coefficient (ADC) in image-guided adaptive brachytherapy (IGABT) for cervical cancer[J]. Brachytherapy, 2021, 20(1): 112-117. DOI: 10.1016/j.brachy.2020.07.014.
[29]
CHEN X L, XU Y S, YIN L, et al. The clinical value of IVIM-MRI and DWI in evaluating and predicting the efficacy of concurrent chemoradiotherapy for locally advanced cervical cancer[J]. Chin J Magn Reson Imag, 2020, 11(9): 776-780. DOI: 10.12015/issn.1674-8034.2020.09.011.
[30]
LI J, QU J R, ZHANG H K, et al. Value of introvoxel incoherent motion imaging on evaluating concurrent chemoradiotherapy responseinpatientswithadvanceduterinecervixcancer[J]. Chin J Radiol, 2018, 52(3): 192-198. DOI: 10.3760/cma.j.issn.1005-1201.2018.03.007.
[31]
RAY K J, SIMARD M A, LARKIN J R, et al. Tumor pH and protein concentration contribute to the signal of amide proton transfer magnetic resonance imaging[J]. Cancer Res, 2019, 79(7): 1343-1352. DOI: 10.1158/0008-5472.CAN-18-2168.
[32]
KAMITANI T, SAGIYAMA K, YAMASAKI Y, et al. Amide proton transfer (APT) imaging of breast cancers and its correlation with biological status[J]. Clin Imaging, 2023, 96: 38-43. DOI: 10.1016/j.clinimag.2023.02.002.
[33]
QAMAR S, KING A D, AI Q Y, et al. Amide proton transfer MRI detects early changes in nasopharyngeal carcinoma: providing a potential imaging marker for treatment response[J]. Eur Arch Otorhinolaryngol, 2019, 276(2): 505-512. DOI: 10.1007/s00405-018-5231-x.
[34]
NISHIE A, ASAYAMA Y, ISHIGAMI K, et al. Amide proton transfer imaging to predict tumor response to neoadjuvant chemotherapy in locally advanced rectal cancer[J]. J Gastroenterol Hepatol, 2019, 34(1): 140-146. DOI: 10.1111/jgh.14315.
[35]
MA B, BLAKELEY J O, HONG X H, et al. Applying amide proton transfer-weighted MRI to distinguish pseudoprogression from true progression in malignant gliomas[J]. J Magn Reson Imaging, 2016, 44(2): 456-462. DOI: 10.1002/jmri.25159.

PREV Preoperative prediction of pathological grading in bladder cancer by deep residual network model based on T2WI
NEXT Radiomics model based on MR T2WI for prenatal diagnosis and classification of placenta accreta spectrum disorders
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn