Share:
Share this content in WeChat
X
Technical Article
Comparative study of different doses of gadolinium contrast agent on contrast enhanced T2 FLAIR and T1WI in diagnosis of brain metastases
CAO Minghui  SU Yun  SU Weifeng  MAO Jiaji  LI Yunhua  SHEN Jun 

Cite this article as: CAO M H, SU Y, SU W F, et al. Comparative study of different doses of gadolinium contrast agent on contrast enhanced T2 FLAIR and T1WI in diagnosis of brain metastases[J]. Chin J Magn Reson Imaging, 2024, 15(1): 152-157. DOI:10.12015/issn.1674-8034.2024.01.024.


[Abstract] Objective To determine the efficacy of contrast enhanced T2 fluid attenuated inversion recovery (CE-T2 FLAIR) sequence and contrast enhanced T1 weighted imaging (CE-T1WI) of brain metastases after injection of different doses of gadolinium contrast agent, and to investigate the clinical value of half-dose contrast agent enhanced T2 FLAIR sequence in the diagnosis of brain metastases.Materials and Methods A total of 30 patients with a history of extracranial primary malignant tumors confirmed by pathological diagnosis and brain metastases confirmed by pathological or clinical follow-up were prospectively enrolled. On the basis of conventional non-enhanced T1WI and T2 FLAIR sequences using a 3.0 T MRI equipment, CE-T2 FLAIR and CE-T1WI scans were performed after administration of half-dose (0.05 mmol/kg) gadolinium-based contrast agent (GBCA), followed by fractional supplementation of GBCA to the conventional-dose (0.1 mmol/kg) and double-dose (0.2 mmol/kg). After injection of the GBCA, both CE-T2 FLAIR and CE-T1WI scans were performed. Objective measurements of images were performed by two observers. The contrast-to-noise ratio (CNR), relative-contrast (RC), and percentage increase (PI) of CE-T2 FLAIR and CE-T1WI images under different doses were calculated. Analysis of variance were used to analyze objective measurements between different groups and multiple comparisons were performed when the difference was statistically significant (P<0.05). The t-test was used to analyze the differences between two groups.Results The objective scores were consistent between two observers. There was no significant difference in CNR and RC values among CE-T2 FLAIR images under three different doses of GBCA (P>0.05). Compared with non-enhanced T2 FLAIR scanning, the PI of the lesion was increased. There were significant differences in the CNR and RC values between the CE-T1WI images at three different doses of GBCA (P<0.05). The results of pairwise comparison showed that the CNR and RC values on the doubling-dose CE-T1WI images were significantly higher than those on the half-dose group (P<0.05). The CNR and RC values of CE-T2 FLAIR images at half-dose and conventional-dose were significantly increased compared to CE-T1WI in this group, and the difference was statistically significant (P<0.05). The CNR and RC values of the half-dose CE-T2 FLAIR images were higher than those of the conventional-dose CE-T1WI (P<0.05). Compared with doubling-dose CE-T1WI, the CNR value of the half-dose CE-T2 FLAIR image increased (P<0.05), while the difference in RC value was not statistically significant (P>0.05).Conclusions In comparison with CE-T1WI, the CE-T2 FLAIR sequence with half-dose GBCA could achieve similar image quality and show values in clinical diagnosis of brain metastases.
[Keywords] brain metastases;magnetic resonance imaging;fluid-attenuated inversion recovery sequence;half-dose gadolinium contrast agent;contrast-enhanced

CAO Minghui   SU Yun   SU Weifeng   MAO Jiaji   LI Yunhua   SHEN Jun*  

Department of Radiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China

Corresponding author: SHEN J, E-mail: shenjun@mail.sysu.edu.cn

Conflicts of interest   None.

Received  2023-11-28
Accepted  2024-01-04
DOI: 10.12015/issn.1674-8034.2024.01.024
Cite this article as: CAO M H, SU Y, SU W F, et al. Comparative study of different doses of gadolinium contrast agent on contrast enhanced T2 FLAIR and T1WI in diagnosis of brain metastases[J]. Chin J Magn Reson Imaging, 2024, 15(1): 152-157. DOI:10.12015/issn.1674-8034.2024.01.024.

[1]
WANG Z, WANG Y, CHANG M, et al. Single-cell transcriptomic analyses provide insights into the cellular origins and drivers of brain metastasis from lung adenocarcinoma[J]. Neuro Oncol, 2023, 25(7): 1262-1274. DOI: 10.1093/neuonc/noad017.
[2]
SUN D D, CHEN K T, LIANG D. T2-FLAIR enhancement in cerebral and meningeal lesions[J]. Med Recap, 2020, 26(10): 2009-2013. DOI: 10.3969/j.issn.1006-2084.2020.10.026.
[3]
CAGNEY D N, MARTIN A M, CATALANO P J, et al. Incidence and prognosis of patients with brain metastases at diagnosis of systemic malignancy: a population-based study[J]. Neuro Oncol, 2017, 19(11): 1511-1521. DOI: 10.1093/neuonc/nox077.
[4]
BOIRE A, BRASTIANOS P K, GARZIA L, et al. Brain metastasis[J]. Nat Rev Cancer, 2020, 20(1): 4-11. DOI: 10.1038/s41568-019-0220-y.
[5]
SUN D, ZHANG G R. Strategies and progresses of stereotactic radiosurgery for intractable brain metastases[J]. Chin. J Radiol Med Prot, 2020, 40(5): 408-412. DOI: 10.3760/cma.j.issn.0254-5098.2020.05.014.
[6]
ØEN S K, JOHANNESSEN K, PEDERSEN L K, et al. Diagnostic value of 18F-FACBC PET/MRI in brain metastases[J]. Clin Nucl Med, 2022, 47(12): 1030-1039. DOI: 10.1097/RLU.0000000000004435.
[7]
LI R, FENG F. Research progress of MRI in brain metastasis[J]. CT Theory and Applications, 2019, 28(5): 631-639. DOI: 10.15953/j.1004-4140.2019.28.05.14.
[8]
TEUNISSEN W H T, GOVAERTS C W, KRAMER M C A, et al. Diagnostic accuracy of MRI techniques for treatment response evaluation in patients with brain metastasis: A systematic review and meta-analysis[J]. Radiother Oncol, 2022, 177: 121-133. DOI: 10.1016/j.radonc.2022.10.026.
[9]
KAUFMANN T J, SMITS M, BOXERMAN J, et al. Consensus recommendations for a standardized brain tumor imaging protocol for clinical trials in brain metastases[J]. Neuro Oncol, 2020, 22(6): 757-772. DOI: 10.1093/neuonc/noaa030.
[10]
GALLDIKS N, LANGEN K J, ALBERT N L, et al. PET imaging in patients with brain metastasis-report of the RANO/PET group[J]. Neuro Oncol, 2019, 21(5): 585-595. DOI: 10.1093/neuonc/noz003.
[11]
IBRAHIM R M, RAHMAN S A A, ELNEKEIDY A E A M. Added value of delayed post-contrast FLAIR in diagnosis of metastatic brain lesions[J/OL]. Egypt J Radio Nucl Med, 2022, 53(1): 205 [2023-08-10]. https://ejrnm.springeropen.com/articles/10.1186/s43055-022-00844-7. DOI: 10.1186/s43055-022-00844-7.
[12]
EDELMAN R, LELOUDAS N, PANG J, et al. Twofold improved tumor-to-brain contrast using a novel T1 relaxation-enhanced steady-state (T(1)RESS) MRI technique[J/OL]. Sci Adv, 2020, 6(44): eabd1635 [2023-08-10]. https://pubmed.ncbi.nlm.nih.gov/33115747/. DOI: 10.1126/sciadv.abd1635.
[13]
KANDA T, ISHII K, KAWAGUCHI H, et al. High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: relationship with increasing cumulative dose of a gadolinium-based contrast material[J]. Radiology, 2014, 270(3): 834-841. DOI: 10.1148/radiol.13131669.
[14]
TEDESCHI E, CARANCI F, GIORDANO F, et al. Gadolinium retention in the body: what we know and what we can do[J]. Radiol Med, 2017, 122(8): 589-600. DOI: 10.1007/s11547-017-0757-3.
[15]
JIN T, ZHANG H, LIU X, et al. Enhancement degree of brain metastases: correlation analysis between enhanced T2 FLAIR and vascular permeability parameters of dynamic contrast-enhanced MRI[J]. Eur Radiol, 2021, 31(8): 5595-5604. DOI: 10.1007/s00330-020-07625-8.
[16]
BENSON J C, CARLSON M L, LANE J I. Peritumoral signal on postcontrast FLAIR images: description and proposed biomechanism in vestibular schwannomas[J]. AJNR Am J Neuroradiol, 2023, 44(10): 1171-1175. DOI: 10.3174/ajnr.A7979.
[17]
YAMASHITA S, TAKESHIMA H, KADOTA Y, et al. T2-fluid-attenuated inversion recovery mismatch sign in lower grade gliomas: correlation with pathological and molecular findings[J]. Brain Tumor Pathol, 2022, 39(2): 88-98. DOI: 10.1007/s10014-022-00433-6.
[18]
PANYAPING T, PUNPICHET M, TUNLAYADECHANONT P, et al. Usefulness of a rim-enhancing pattern on the contrast-enhanced 3D-FLAIR sequence and MRI characteristics for distinguishing meningioma and malignant dural-based tumor[J]. AJNR Am J Neuroradiol, 2023, 44(3): 247-253. DOI: 10.3174/ajnr.A7780.
[19]
MATHEWS V P, CALDEMEYER K S, LOWE M J, et al. Brain: gadolinium-enhanced fast fluid-attenuated inversion-recovery MR imaging[J]. Radiology, 1999, 211(1): 257-263. DOI: 10.1148/radiology.211.1.r99mr25257.
[20]
KIM D, HEO Y J, JEONG H W, et al. Usefulness of the delay alternating with nutation for tailored excitation pulse with T1-weighted sampling perfection with application-optimized contrasts using different flip angle evolution in the detection of cerebral metastases: comparison with MPRAGE imaging[J]. AJNR Am J Neuroradiol, 2019, 40(9): 1469-1475. DOI: 10.3174/ajnr.A6158.
[21]
RUI W, JIN T, ZHANG H, et al. Optimization of contrast agent dosage on contrast-enhanced T2 fluid-attenuated inversion recovery: an in vitro and in vivo study[J]. J Comput Assist Tomogr, 2021, 45(1): 121-127. DOI: 10.1097/RCT.0000000000001055.
[22]
JIN T, GE M, HUANG R, et al. Utility of contrast-enhanced T2 FLAIR for imaging brain metastases using a half-dose high-relaxivity contrast agent[J]. AJNR Am J Neuroradiol, 2021, 42(3): 457-463. DOI: 10.3174/ajnr.A6931.
[23]
ZHOU Z, SANDERS J W, JOHNSON J M, et al. Computer-aided detection of brain metastases in T1-weighted MRI for stereotactic radiosurgery using deep learning single-shot detectors[J]. Radiology, 2020, 295(2): 407-415. DOI: 10.1148/radiol.2020191479.
[24]
EGGEN A C, WINDT T, BOSMA I, et al. Value of screening and follow-up brain MRI scans in patients with metastatic melanoma[J]. Cancer Med, 2021, 10(23): 8395-8404. DOI: 10.1002/cam4.4342.
[25]
XU Y, CHEN B, CHANG H X. Differential diagnosis of brain metastases between MRI contrast-enhanced FLIAR sequence and T1WI enhancement[J]. China Clin Prac Med, 2010, 4(8): 120-121. DOI: 10.3760/cma.j.issn1673-8799.2010.08.70.
[26]
SZE G, JOHNSON C, KAWAMURA Y, et al. Comparison of single- and triple-dose contrast material in the MR screening of brain metastases[J]. AJNR Am J Neuroradiol, 1998, 19(5): 821-828.
[27]
ROBERT P, VIVES V, GRINDEL A L, et al. Contrast-to-dose relationship of gadopiclenol, an MRI macrocyclic gadolinium-based contrast agent, compared with gadoterate, gadobenate, and gadobutrol in a rat brain tumor model[J]. Radiology, 2020, 294(1): 117-126. DOI: 10.1148/radiol.2019182953.
[28]
LOEVNER L A, KOLUMBAN B, HUTÓCZKI G, et al. Efficacy and safety of gadopiclenol for contrast-enhanced MRI of the central nervous system: the PICTURE randomized clinical trial[J/OL]. Invest Radiol, 2023, 58(5): 307 [2023-08-10]. https://pubmed.ncbi.nlm.nih.gov/36729404/. DOI: 10.1097/RLI.0000000000000944.
[29]
ELSTER A D, SOBOL W T, HINSON W H. Pseudolayering of Gd-DTPA in the urinary bladder[J]. Radiology, 1990, 174(2): 379-381. DOI: 10.1148/radiology.174.2.2296649.
[30]
ZHANG L L, WANG X M. Comparative study on contrast-enhanced Cube FLAIR and T1WI sequences in craniocerebral diseases[J]. Chin J Magn Reson Imaging, 2017, 8(10): 726-731. DOI: 10.12015/ssn.1674-8034.2017.10.002.
[31]
AHN S J, TAOKA T, MOON W J, et al. Contrast‐enhanced fluid‐attenuated inversion recovery in neuroimaging: a narrative review on clinical applications and technical advances[J]. J Magn Reson Imaging, 2022, 56(2): 341-353. DOI: 10.1002/jmri.28117.
[32]
CHUL L Y, SUH S, RYOO I, et al. Imaging finding and analysis of brain lymphoma in contrast-enhanced fluid attenuated inversion recovery sequence[J/OL]. Eur J Radiol, 2022, 155: 110490 [2023-08-10]. https://pubmed.ncbi.nlm.nih.gov/36030660/. DOI: 10.1016/j.ejrad.2022.110490.
[33]
KÖHRMANN M, STRUFFERT T, FRENZEL T, et al. The hyperintense acute reperfusion marker on fluid-attenuated inversion recovery magnetic resonance imaging is caused by gadolinium in the cerebrospinal fluid[J]. Stroke, 2012, 43(1): 259-261. DOI: 10.1161/STROKEAHA.111.632356.
[34]
OSAWA I, KOZAWA E, YAMAMOTO Y, et al. Contrast enhancement of the normal infundibular recess using heavily T2-weighted 3D FLAIR[J]. Magn Reson Med Sci, 2022, 21(3): 469-476. DOI: 10.2463/mrms.mp.2021-0021.
[35]
NAGANAWA S. The technical and clinical features of 3D-FLAIR in neuroimaging[J]. Magn Reson Med Sci, 2015, 14(2): 93-106. DOI: 10.2463/mrms.2014-0132.

PREV Quantitative assessment of skeletal muscle fat content in type 2 diabetic patients by magnetic resonance multi-echo DIXON technique
NEXT The application value of self-developed high-resolution pelvic-specific coil in 3.0 T MRI equipment
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn