Share:
Share this content in WeChat
X
Technical Article
The application value of self-developed high-resolution pelvic-specific coil in 3.0 T MRI equipment
WANG Xiao  ZHENG Fuling  LU Xiaoping  LI Juan  ZHANG Peng  LIU Mengchao  JIN Chuan  ZHANG Hongyu  WANG Tianjiao  WANG Yun  XUE Huadan 

Cite this article as: WANG X, ZHENG F L, LU X P, et al. The application value of self-developed high-resolution pelvic-specific coil in 3.0 T MRI equipment[J]. Chin J Magn Reson Imaging, 2024, 15(1): 158-162, 178. DOI:10.12015/issn.1674-8034.2024.01.025.


[Abstract] Objective To explore the value of self-developed 16-channel high-resolution pelvic-specific coil (16C) in pelvic 3.0 T MRI.Methods and Materials Thirty-five patients underwent routine pelvic MRI were prospectively included, and the same axial and sagittal T2WI sequences were acquired with a 16C coil and a 32-channel body coil (32C), respectively. Signal to noise ratio (SNR) and contrast to noise ratio (CNR) of the third sacral vertebrae, myometrium, peripheral band of prostate, rectal wall, and internal obturator muscle were compared between images of the same sequences acquired with the two coils. Qualitative image quality and rectal wall depiction were evaluated by two radiologists for both groups.Results Compared with 32C, SNR of third sacral vertebrae, myometrium, peripheral band of the prostate on T2WI sagittal images, SNR of intraocclusal muscle on T2WI axial images, CNR of third sacral vertebrae, myometrium on T2WI sagittal images and CNR of rectal wall on T2WI axial images were all higher, and all difference were statistically significant (P<0.05). Rectal wall depiction on T2WI axial images and all qualitative image quality were better in 16C group than that of 32C group (P<0.05).Conclusions Compared with conventional 32C coils, images acquired with 16C coils have better imaging quality and diagnostic confidence.
[Keywords] magnetic resonance imaging;coil;signal to noise ratio;contrast to noise ratio;image quality

WANG Xiao   ZHENG Fuling   LU Xiaoping   LI Juan   ZHANG Peng   LIU Mengchao   JIN Chuan   ZHANG Hongyu   WANG Tianjiao   WANG Yun   XUE Huadan*  

Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100032, China

Corresponding author: XUE H D, E-mail: bjdanna95@163.com

Conflicts of interest   None.

Received  2023-09-05
Accepted  2024-01-05
DOI: 10.12015/issn.1674-8034.2024.01.025
Cite this article as: WANG X, ZHENG F L, LU X P, et al. The application value of self-developed high-resolution pelvic-specific coil in 3.0 T MRI equipment[J]. Chin J Magn Reson Imaging, 2024, 15(1): 158-162, 178. DOI:10.12015/issn.1674-8034.2024.01.025.

[1]
PROSCIA N, JAFFE T A, NEVILLE A M, et al. MRI of the pelvis in women: 3D versus 2D T2-weighted technique[J]. AJR Am J Roentgenol, 2010, 195(1): 254-259. DOI: 10.2214/ajr.09.3226.
[2]
LEE E J, HWANG J, PARK S, et al. Utility of accelerated T2-weighted turbo spin-echo imaging with deep learning reconstruction in female pelvic MRI: a multi-reader study[J]. Eur Radiol, 2023, 33(11): 7697-7706. DOI: 10.1007/s00330-023-09781-z.
[3]
LIANG X, YEN A, BAI T, et al. Bony structure enhanced synthetic CT generation using Dixon sequences for pelvis MR-only radiotherapy[J]. Med Phys, 2023, 50(12): 7368-7382. DOI: 10.1002/mp.16556.
[4]
HERRMANN J, BENKERT T, BRENDLIN A, et al. Shortening acquisition time and improving image quality for pelvic MRI using deep learning reconstruction for diffusion-weighted imaging at 1.5T[J/OL]. Acad Radiol, 2023: S1076-S6332(23)00348-3 [2023-11-16]. https://pubmed.ncbi. nlm.nih.gov/37500416/. DOI: 10.1016/j.acra.2023.06.035.
[5]
KIDO A, HIMOTO Y, MORIBATA Y, et al. MRI in the diagnosis of endometriosis and related diseases[J]. Korean J Radiol, 2022, 23(4): 426-445. DOI: 10.3348/kjr.2021.0405.
[6]
ZHANG Z Y, FANG X, WEI C, et al. Comparative study on enhancement efficiency of T1 quick3D and T1 FSE sequences of 1.5T MR for pelvic muscle[J]. China Med Equip, 2020, 17(7): 59-62. DOI: 10.3969/J.ISSN.1672-8270.2020.07.015.
[7]
UEDA T, OHNO Y, YAMAMOTO K, et al. Compressed sensing and deep learning reconstruction for women's pelvic MRI denoising: utility for improving image quality and examination time in routine clinical practice[J/OL]. Eur J Radiol, 2021, 134: 109430 [2023-11-16]. https://pubmed.ncbi.nlm.nih.gov/33276249/. DOI: 10.1016/j.ejrad.2020.109430.
[8]
QIN Y, XIAO Z B. The applications of transabdominal and transperineal ultrasound and MRI in the diagnosis of placenta previa[J]. J Clin Radiol, 2018, 37(9): 1531-1534. DOI: 10.13437/j.cnki.jcr.2018.09.030.
[9]
TSUBOYAMA T, TAKEI O, OKADA A, et al. Comparison of HASTE with multiple signal averaging versus conventional turbo spin echo sequence: a new option for T2-weighted MRI of the female pelvis[J]. Eur Radiol, 2020, 30(6): 3245-3253. DOI: 10.1007/s00330-020-06686-z.
[10]
AKAZAWA M, HASHIMOTO K. Preliminary results of deep learning approach for preoperative diagnosis of ovarian cancer based on pelvic MRI scans[J]. Anticancer Res, 2023, 43(8): 3817-3821. DOI: 10.21873/anticanres.16568.
[11]
VIJAY K, KELLEY L, PAK T, et al. Multimodality imaging of anterior compartment pelvic floor repair[J/OL]. Radiographics, 2023, 43(8): e230032 [2023-11-16]. https://pubmed.ncbi.nlm.nih.gov/37498784/. DOI: 10.1148/rg.230032.
[12]
ZHANG X Q, XIANG Y J, YAO J, et al. Automatic segmentation of the female pelvic floor muscles on MRI for pelvic floor function assessment[J]. Quant Imaging Med Surg, 2023, 13(7): 4181-4195. DOI: 10.21037/qims-22-1198.
[13]
LI Y C, WU Y Y, HUANG M X, et al. Attention-guided multi-scale learning network for automatic prostate and tumor segmentation on MRI[J/OL]. Comput Biol Med, 2023, 165: 107374 [2023-11-16]. https://pubmed.ncbi.nlm.nih.gov/37611428/. DOI: 10.1016/j.compbiomed.2023.107374.
[14]
LIN Y, YILMAZ E C, BELUE M J, et al. Prostate MRI and image Quality: it is time to take stock[J/OL]. Eur J Radiol, 2023, 161: 110757 [2023-11-16]. https://pubmed.ncbi.nlm.nih.gov/36870241/. DOI: 10.1016/j.ejrad.2023.110757.
[15]
O'SHEA A, HARISINGHANI M. PI-RADS: multiparametric MRI in prostate cancer[J]. Magma, 2022, 35(4): 523-532. DOI: 10.1007/s10334-022-01019-1.
[16]
ZHAO W, XU H, ZHAO R, et al. MRI-based radiomics model for preoperative prediction of lateral pelvic lymph node metastasis in locally advanced rectal cancer[J/OL]. Acad Radiol, 2023: S1076-S6332(23)00385-9 [2023-11-16]. https://pubmed.ncbi.nlm.nih.gov/37643 928/. DOI: 10.1016/j.acra.2023.07.016.
[17]
ZHAO L, LIANG M, WU P Y, et al. A preliminary study of synthetic magnetic resonance imaging in rectal cancer: imaging quality and preoperative assessment[J/OL]. Insights Imaging, 2021, 12(1): 120 [2023-11-16]. https://pubmed.ncbi.nlm.nih.gov/34420097/. DOI: 10.1186/s13244-021-01063-w.
[18]
BATES D D B, HOMSI M E, CHANG K J, et al. MRI for rectal cancer: staging, mrCRM, EMVI, lymph node staging and post-treatment response[J]. Clin Colorectal Cancer, 2022, 21(1): 10-18. DOI: 10.1016/j.clcc.2021.10.007.
[19]
CHEN F H, DENG Y, YANG H X, et al. The value of MRI in the diagnosis of endometrial carcinoma before operation[J]. Chin J CT MRI, 2018, 16(6): 108-110, 140. DOI: 10.3969/j.issn.1672-5131.2018.06.033.
[20]
LI L. Value of pelvis MRI in the evaluation of female pelvic organ prolapsed[J]. Chin J CT MRI, 2020, 18(5): 46-48. DOI: 10.3969/j.issn.1672-5131.2020.05.015.
[21]
GOPIREDDY D R, VIRARKAR M, KUMAR S, et al. Acute pelvic pain: a pictorial review with magnetic resonance imaging[J/OL]. J Clin Imaging Sci, 2022, 12: 48 [2023-11-16]. https://pubmed.ncbi.nlm.nih.gov/36128358/. DOI: 10.25259/JCIS_70_2022.
[22]
CHEN H Y, LIANG S, LIANG Z J. Clinical application of multimodal highdefinition MRI technogy in ovarian masses[J]. J Pract Med Imag, 2022, 23(5): 462-464. DOI: 10.16106/j.cnki.cn14-1281/r.2022.05.008.
[23]
WANG X, LIU M, CHEN M, et al. The significance of peripheral zone imaging features on pelvic T2 weighted imaging for the diagnosis of prostate cancer with PSA<20 μg/L[J]. Chin J Urol, 2013, 34(4): 292-297. DOI: 10.3760/cma.j.issn.1000-6702.2013.04.017.
[24]
BARRETT T, ROOIJ M D, GIGANTI F, et al. Quality checkpoints in the MRI-directed prostate cancer diagnostic pathway[J]. Nat Rev Urol, 2023, 20(1): 9-22. DOI: 10.1038/s41585-022-00648-4.
[25]
LEWIS S, GANTI A, ARGIRIADI P, et al. Prostate MRI using a rigid two-channel phased-array endorectal coil: comparison with phased array coil acquisition at 3 T[J/OL]. Cancer Imaging, 2022, 22(1): 15 [2023-11-16]. https://pubmed.ncbi.nlm.nih.gov/35296357/. DOI: 10.1186/s40644-022-00453-7.
[26]
LIN W W, WANG L L, DUAN Q. Anatomy of the anal canal and staging of low rectal cancer with high resolution magnetic resonance imaging[J]. Chin J Gastrointest Surg, 2014, 17(3): 235-238. DOI: 10.3760/cma.j.issn.1671-0274.2014.03.008.
[27]
WONG C, FU Y, LI M Y, et al. MRI-based artificial intelligence in rectal cancer[J]. J Magn Reson Imaging, 2023, 57(1): 45-56. DOI: 10.1002/jmri.28381.
[28]
HORVAT N, EL HOMSI M, MIRANDA J, et al. Rectal MRI interpretation after neoadjuvant therapy[J]. J Magn Reson Imaging, 2023, 57(2): 353-369. DOI: 10.1002/jmri.28426.
[29]
CHEN D Y, RAN Q S. Comparison of four-channel phased array surface coil and twelve-channel skull orthogonal coil in ankle joint MRI[J]. China Med Devices, 2021, 36(7): 77-80. DOI: 10.3969/j.issn.1674-1633.2021.07.017.
[30]
LI H Y, CAO S L, WANG P P, et al. The numerical simulation and design of a 6-channel array coil for MRI[J]. Chin J Biomed Eng, 2017, 36(6): 711-717. DOI: 10.3969/j.issn.0258-8021.2017.06.011.
[31]
WANG S J, XIAN J F, JIANG H, et al. The application study of the 8-channel panorama eye surface coil in 3.0T orbital MRI[J]. Radiol Pract, 2019, 34(8): 869-873. DOI: 10.13609/j.cnki.1000-0313.2019.08.008.
[32]
YE F, SONG Y, YU X D, et al. The effects of SCIC technology on quantitative analysis of dynamic contrast enhancement-MRI with LAVA[J]. Radiol Pract, 2016, 31(7): 591-594. DOI: 10.13609/j.cnki.1000-0313.2016.07.004.
[33]
ZHANG Q W, COOLEN B F, VAN DEN BERG S, et al. Comparison of four MR carotid surface coils at 3T[J/OL]. PLoS One, 2019, 14(3): e0213107 [2023-11-16]. https://pubmed.ncbi.nlm.nih.gov/30830934/. DOI: 10.1371/journal.pone.0213107.
[34]
DE BUCK M H S, JEZZARD P, FROST R, et al. 10-channel phased-array coil for carotid wall MRI at 3T[J/OL]. PLoS One, 2023, 18(8): e0288529 [2023-11-16]. https://pubmed.ncbi.nlm.nih.gov/37556496/. DOI: 10.1371/journal.pone.0288529.
[35]
TATE Q, KIM S E, TREIMAN G, et al. Increased vessel depiction of the carotid bifurcation with a specialized 16-channel phased array coil at 3T[J]. Magn Reson Med, 2013, 69(5): 1486-1493. DOI: 10.1002/mrm.24380.
[36]
GORMLY K L. High-resolution T2-weighted MRI to evaluate rectal cancer: why variations matter[J]. Korean J Radiol, 2021, 22(9): 1475-1480. DOI: 10.3348/kjr.2021.0560.
[37]
ROSÉN R, NILSSON E, RAHMAN M, et al. Accuracy of MRI in early rectal cancer: national cohort study[J]. Br J Surg, 2022, 109(7): 570-572. DOI: 10.1093/bjs/znac059.
[38]
HORVAT N, CARLOS TAVARES ROCHA C, CLEMENTE OLIVEIRA B, et al. MRI of rectal cancer: tumor staging, imaging techniques, and management[J]. Radiographics, 2019, 39(2): 367-387. DOI: 10.1148/rg.2019180114.

PREV Comparative study of different doses of gadolinium contrast agent on contrast enhanced T2 FLAIR and T1WI in diagnosis of brain metastases
NEXT Clinical application of MRI-guided vacuum-assisted biopsy for breast lesions
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn