Share:
Share this content in WeChat
X
Review
Application of MRI diffusion imaging in temporal lobe epilepsy
YANG Wenrui  CHEN Bing 

Cite this article as: YANG W R, CHEN B. Application of MRI diffusion imaging in temporal lobe epilepsy[J]. Chin J Magn Reson Imaging, 2024, 15(1): 184-188. DOI:10.12015/issn.1674-8034.2024.01.031.


[Abstract] Epilepsy is a chronic nervous system disease caused by the abnormal discharge of brain neurons, which seriously affects patients' physical and mental health and quality of life. Among which, the temporal lobe epilepsy (TLE) is a common drug-resistant epilepsy in adults, so timely diagnosis and treatment is particularly important. diffusion MRI (dMRI) technology can use the diffusion information of water molecules to reflect the changes in the microstructure of TLE patients' brain tissu, dMRI mainly includes diffusion weighted imaging (DWI) and various diffusion techniques derived from it, such as diffusion tensor imagin (DTI), diffusion kurtosis imaging (DKI), diffusion spectrum imaging (DSI) and neurite orientation dispersion and density imaging (NODDI). In this review, we briefly summarized the clinical application progress of various dMRI technologies in TLE, and prospected its future research prospects, aiming to understand the application status of diffusion technology in TLE, and provide certain references for the study of TLE diagnosis, treatment and diffusion technology in related fields.
[Keywords] temporal lobe epilepsy;magnetic resonance imaging;diffusion magnetic resonance imaging;diffusion weighted imaging;diffusion tensor imaging;diffusion kurtosis image;diffusion spectrum imaging;neurite orientation dispersion and density imaging

YANG Wenrui   CHEN Bing*  

Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan 750004, China

Corresponding author: CHEN B, E-mail: chenbing135501@163.com

Conflicts of interest   None.

Received  2023-09-01
Accepted  2023-12-07
DOI: 10.12015/issn.1674-8034.2024.01.031
Cite this article as: YANG W R, CHEN B. Application of MRI diffusion imaging in temporal lobe epilepsy[J]. Chin J Magn Reson Imaging, 2024, 15(1): 184-188. DOI:10.12015/issn.1674-8034.2024.01.031.

[1]
BELL G S, NELIGAN A, SANDER J W. An unknown quantity--the worldwide prevalence of epilepsy[J]. Epilepsia, 2014, 55(7): 958-962. DOI: 10.1111/epi.12605.
[2]
GALOVIC M, VAN DOOREN VICTOR Q H, POSTMA T S, et al. Progressive cortical thinning in patients with focal epilepsy[J]. JAMA Neurol, 2019, 76: 1230-1239. DOI: 10.1001/jamaneurol.2019.1708.
[3]
BANERJEE J, SRIVASTAVA A, SHARMA D, et al. Differential regulation of excitatory synaptic transmission in the hippocampus and anterior temporal lobe by cyclin dependent kinase 5 (Cdk5) in mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS)[J/OL]. Neurosci Lett, 2021, 761: 136096 [2023-09-01]. https://pubmed.ncbi.nlm.nih.gov/34217817/. DOI: 10.1016/j.neulet.2021.136096.
[4]
ELSHERIF M, ESMAEL A. Hippocampal atrophy and quantitative EEG markers in mild cognitive impairment in temporal lobe epilepsy versus extra-temporal lobe epilepsy[J]. Neurol Sci, 2022, 43(3): 1975-1986. DOI: 10.1007/s10072-021-05540-4.
[5]
DIPIERO M, RODRIGUES P G, GROMALA A, et al. Applications of advanced diffusion MRI in early brain development: a comprehensive review[J]. Brain Struct Funct, 2023, 228(2): 367-392. DOI: 10.1007/s00429-022-02605-8.
[6]
CROMBE A, PLANCHE V, RAFFARD G, et al. Deciphering the microstructure of hippocampal subfields with in vivo DTI and NODDI: Applications to experimental multiple sclerosis. Neuroimage[J]. 2018, 15, 172: 357-368. DOI: 10.1016/j.neuroimage.2018.01.061.
[7]
CHILLA GS, TAN CH, XU C, et al. Diffusion weighted magnetic resonance imaging and its recent trend-a survey[J]. Quant Imaging Med Surg, 2015, 5: 407-422. DOI: 10.3978/j.issn.2223-4292.2015.03.01.
[8]
DEVITO A, MANKAD K, PUJAR S, et al. Narrative review of epilepsy: getting the most out of your neuroimaging[J]. Transl Pediatr, 2021, 10(4): 1078-1099. DOI: 10.21037/tp-20-261.
[9]
BAI Y C, MA C H, LI J, et al. Application of synthetic magnetic resonance imaging and 3D-pCASL in the diagnosis of hippocampal sclcrosis in patients with medial temporal lobe epilepsy[J]. Chin J Med Imaging, 2022, 30(12): 1206-1211. DOI: 10.3969/j.issn.1005-5185.2022.12.002.
[10]
STEVEN A J, ZHUO J, MELHEM E R. Diffusion kurtosis imaging: an emerging technique for evaluating the microstructural environment of the brain[J/OL]. AJR Am J Roentgenol, 2014, 202(1): W26-W33 [2023-09-01]. https://pubmed.ncbi.nlm.nih.gov/24370162/. DOI: 10.2214/AJR.13.11365.
[11]
ANDICA C, KAMAGATA K, HATANO T, et al. MR biomarkers of degenerative brain disorders derived from diffusion imaging[J]. J Magn Reson Imaging, 2020, 52(6): 1620-1636. DOI: 10.1002/jmri.27019.
[12]
CHOI E B, JANG S H. Diffusion tensor imaging studies on recovery of injured optic radiation: A minireview[J/OL]. Neural Plast, 2020, 2020: 8881224 [2023-09-01]. https://pubmed.ncbi.nlm.nih.gov/32587609/. DOI: 10.1155/2020/8881224.
[13]
OMAR M K M, Abd ALLAH A E K H, MAGHRABI M G, et al. The value of quantitative diffusion tensor imaging indices of spinal cord disorders[J/OL]. Egypt J Radiol Nucl Med, 2021, 52: 271 [2023-09-01]. https://doi.org/10.1186/s43055-021-00596-w. DOI: 10.1186/s43055-021-00596-w.
[14]
JOHNSON G W, CAI L Y, NARASIMHAN S, et al. Temporal lobe epilepsy lateralisation and surgical outcome prediction using diffusion imaging[J]. J Neurol Neurosurg Psychiatry, 2022, 93(6): 599-608. DOI: 10.1136/jnnp-2021-328185.
[15]
HOU X X, FENG H X, XU B, et al. A tract-based spatial statistics study of white matter integrity in epilepsy[J]. Am J Transl Res, 2022, 14(12): 8980-8990.
[16]
DUNCAN J S, WINSTON G P, KOEPP M J, et al. Brain imaging in the assessment for epilepsy surgery[J]. Lancet Neurol, 2016, 15(4): 420-433. DOI: 10.1016/S1474-4422(15)00383-X.
[17]
SLINGER G,SINKE M R,BRAUN K P, et al. White matter abnomalities at a regional and voxel level in focal and generalized epilepsy: a systematic review and meta-analysis[J]. Neuroimage Clin, 2016, 12(4): 902-909. DOI: 10.1016/j.nicl.2016.10.025.
[18]
MORGAN V L, CHANG C, ENGLOT D J, et al. Temporal lobe epilepsy alters spatio-temporal dynamics of the hippocampal functional network[J/OL]. Neuroimage Clin, 2020, 26: 102254 [2023-09-01]. https://pubmed.ncbi.nlm.nih.gov/32251905/. DOI: 10.1016/j.nicl.2020.102254.
[19]
GLEICHGERRCHT E, KELLER S S, DRANE D L, et al. Temporal lobe epilepsy surgical outcomes can be inferred based on structural connectome hubs: a machine learning study[J]. Ann Neurol, 2020, 88(5): 970-983. DOI: 10.1002/ana.25888.
[20]
SETIADI T M, MARTENS S, OPMEER E M, et al. Widespread white matter aberration is associated with the severity of apathy in amnestic mild cognitive impairment: Tract-based spatial statistics analysis[J/OL]. Neuroimage Clin, 2021, 29: 102567 [2023-09-01]. https://www.sciencedirect.com/science/article/pii/S2213158221000115?via%3Dihub. DOI: 10.1016/j.nicl.2021.102567.
[21]
VOSKUILEN L, MAZZOLI V, OUDEMAN J, et al. Crossing muscle fibers of the human tongue resolved in vivo using constrained spherical deconvolution[J]. J Magn Reson Imaging, 2019, 50(1): 96-105. DOI: 10.1002/jmri.26609.
[22]
STASENKO A, LIN C, BONILHA L, et al. Neurobehavioral and clinical comorbidities in epilepsy: The role of white matter network disruption[J/OL]. Neuroscientist, 2022, 22: 10738584221076133 [2023-09-01]. https://pubmed.ncbi.nlm.nih.gov/35193421/. DOI: 10.1177/10738584221076133.
[23]
HASAN K M, YAMADA K. Overview of diffusion tensor, diffusion kurtosis, and Q-space imaging and software tools[J]. Magn Reson Imaging Clin N Am, 2021, 29(2): 263-268. DOI: 10.1016/j.mric.2021.02.003.
[24]
LIANG X, SHI W W, TAN Y. Research progress of magnetic resonance diffusion kurtosis imaging in brain tumors[J]. Chin J Magn Reson Imaging, 2020, 11(3): 221-223. DOI: 10.12015/issn.1674-8034.2020.03.013.
[25]
KANG L, CHEN J, HUANG J, et al. Identifying epilepsy based on machine-learning technique with diffusion kurtosis tensor[J]. CNS Neurosci Ther, 2022, 28(3): 354-363. DOI: 10.1111/cns.13773.
[26]
GONG X R, BI G L, WANG B, et al. Value of diffusion kurtosis imaging in the diagnosis of negative temporal lobe epilepsy with conventional MRI[J]. Chin J Med Imaging, 2019, 27(2): 112-114. DOI: 10.3969/j.issn.1005-5185.2019.02.007.
[27]
GAO Y, ZHANG Y, WONG C S, et al. Diffusion abnormalities in temporal lobes of children with temporal lobe epilepsy: a preliminary diffusional kurtosis imaging study and comparison with diffusion tensor imaging[J]. NMR Biomed, 2012, 25: 1369-1377. DOI: 10.1002/nbm.2809.
[28]
HUANG J, XU J H, KANG L, et al. Identifying epilepsy based on deep learning using DKI images[J/OL]. Front Hum Neurosci, 2020, 14: 590815 [2023-09-01]. https://pubmed.ncbi.nlm.nih.gov/33240068/. DOI: 10.3389/fnhum.2020.590815.
[29]
ZHANG Y, GAO Y, ZHOU M, et al. A diffusional kurtosis imaging study of idiopathic generalized epilepsy with unilateral interictal epileptiform discharges in children[J]. J Neuroradiol, 2016, 43(5): 339-345. DOI: 10.1016/j.neurad.2016.05.001.
[30]
GARCIA R C, ADLURU N, CHU D Y, et al. Multi-shell connectome DWI-based graph theory measures for the prediction of temporal lobe epilepsy and cognition[J]. Cereb Cortex, 2023, 33(12): 8056-8065. DOI: 10.1093/cercor/bhad098.
[31]
LENG B, HAN S, BAO Y, et al. The uncinate fasciculus as observed using diffusion spectrum imaging in the human brain[J]. Neuroradiology, 2016, 58(6): 595-606. DOI: 10.1007/s00234-016-1650-9.
[32]
JIN Z, BAO Y, WANG Y, et al. Differences between generalized Q-sampling imaging and diffusion tensor imaging in visualization of crossing neural fibers in the brain[J]. Surg Radiol Anat, 2019, 41(9): 1019-1028. DOI: 10.1007/s00276-019-02264-1.
[33]
WANG Z M, WEI P H, ZHANG M, et al. Diffusion spectrum imaging predicts hippocampal sclerosis in mesial temporal lobe epilepsy patients[J]. Ann Clin Transl Neurol, 2022, 9(3): 242-252. DOI: 10.1002/acn3.51503.
[34]
LEMKADDEM A, DADUCCIAE A, KUNZ A, et al. Connectivity and tissue microstructural alterations in right and left temporal lobe epilepsy revealed by diffusion spectrum imaging[J]. Neuroimage Clin, 2014, 5: 349-358. DOI: 10.1016/j.nicl.2014.07.013.
[35]
HINDS W, MODI S, ANKEETA A, et al. Pre-surgical features of intrinsic brain networks predict single and joint epilepsy surgery outcomes[J/OL]. Neuroimage Clin, 2023, 38: 103387 [2023-09-01]. https://pubmed.ncbi.nlm.nih.gov/37023491/. DOI: 10.1016/j.nicl.2023.103387.
[36]
SHIH Y C, TSENG C E, LIN F H, et al. Hippocampal atrophy is associated with altered hippocampus-posterior cingulate cortex connectivity in mesial temporal lobe epilepsy with hippocampal sclerosis[J]. AJNR Am J Neuroradiol, 2017, 38(3): 626-632. DOI: 10.3174/ajnr.A5039.
[37]
SUN F, HUANG Y, WANG J, et al. Research progress in diffusion spectrum imaging[J/OL]. Brain Sci, 2023, 13(10): 1497 [2023-09-01]. https://pubmed.ncbi.nlm.nih.gov/37891866/. DOI: 10.3390/brainsci13101497.
[38]
AZAD A, CABEEN R P, SEPEHRBAND F, et al. Microstructural properties within the amygdala and affiliated white matter tracts across adolescence[J/OL]. Neuroimage, 2021, 243: 118489 [2023-09-01]. https://pubmed.ncbi.nlm.nih.gov/34450260/. DOI: 10.1016/j.neuroimage.2021.118489.
[39]
ANDICA C, KAMAGATA K, HATANO T, et al. MR biomarkers of degenerative brain disorders derived from diffusion imaging[J]. J Magn Reson Imaging, 2020, 52(6): 1620-1636. DOI: 10.1002/jmri.27019.
[40]
MARTINEZ H E, GRUSSU F, PRADOS F, et al. Diffusion-weighted imaging: recent advances and applications[J]. Semin Ultrasound CT & MR, 2021, 42(5): 490-506. DOI: 10.1053/j.sult.2021.07.006.
[41]
VAHER K, GALDI P, BLESA C M, et al. General factors of white matter microstructure from DTI and NODDI in the developing brain[J/OL]. Neuroimage, 2022, 254: 119169 [2023-09-01]. https://pubmed.ncbi.nlm.nih.gov/35367650/. DOI: 10.1016/j.neuroimage.2022.119169.
[42]
KRAGULJAC N V, GUERRERI M, STRICKLAND M J, et al. Neurite orientation dispersion and density imaging in psychiatric disorders: A systematic literature review and a technical note[J]. Biol Psychiatry Glob Open Sci, 2022, 3(1): 10-21. DOI: 10.1016/j.bpsgos.2021.12.012.
[43]
SEYEDMIRZAEI H, NABIZADEH F, AARABI M H, et al. Neurite orientation dispersion and density imaging in multiple sclerosis: A systematic review[J]. J Magn Reson Imaging, 2023, 58(4): 1011-1029. DOI: 10.1002/jmri.28727.
[44]
SONE D, SATO N, OTA M, et al. Abnormal neurite density and orientation dispersion in unilateral temporal lobe epilepsy detected by advanced diffusion imaging[J]. Neuroimage Clin, 2018, 20: 772-782. DOI: 10.1016/j.nicl.2018.09.017.
[45]
WINSTON G P, VOS S B, CALDAIROU B, et al. Microstructural imaging in temporal lobe epilepsy: Diffusion imaging changes relate to reduced neurite density[J/OL]. Neuroimage Clin, 2020, 26: 102231 [2023-09-01]. https://pubmed.ncbi.nlm.nih.gov/32146320/. DOI: 10.1016/j.nicl.2020.102231.
[46]
GIACHETTI I, PADELLI F, AQUINO D, et al. Role of NODDI in the MRI characterization of hippocampal abnormalities in temporal lobe epilepsy: Clinico-histopathologic correlations[J/OL]. Neurology, 2022, 98: e1771-e1782 [2023-09-01]. https://pubmed.ncbi.nlm.nih.gov/35256485/. DOI: 10.1212/WNL.0000000000200140.
[47]
ROSTAMPOUR M, HASHEMI H, NAJIBI S M, et al. Detection of structural abnormalities of cortical and subcortical gray matter in patients with MRI-negative refractory epilepsy using neurite orientation dispersion and density imaging[J]. Phys Med, 2018, 48: 47-54. DOI: 10.1016/j.ejmp.2018.03.005.
[48]
HATTON S N, HUYNH K H, BONILHA L, et al. White matter abnormalities across different epilepsy syndromes in adults: an ENIGMA-Epilepsy study[J]. Brain, 2020, 143(8): 2454-2473. DOI: 10.1093/brain/awaa200.
[49]
CHAU LOO K G, CHIU A, DAVEY Z, et al. High-resolution hippocampal diffusion tensor imaging of mesial temporal sclerosis in refractory epilepsy[J]. Epilepsia, 2022, 63: 2301-2311. DOI: 10.1111/epi.17330.

PREV Theoretical basis and MRI research progress of probiotics in the treatment of mental diseases
NEXT Advances in functional MRI in cognitive impairment of moyamoya disease
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn