Share:
Share this content in WeChat
X
Review
Advances in functional MRI in cognitive impairment of moyamoya disease
FU Lin  YU Hao  LIU Deguo 

Cite this article as: FU L, YU H, LIU D G. Advances in functional MRI in cognitive impairment of moyamoya disease[J]. Chin J Magn Reson Imaging, 2024, 15(1): 189-193. DOI:10.12015/issn.1674-8034.2024.01.032.


[Abstract] Moyamoya disease (MMD) is a progressive stenotic or occlusive cerebrovascular disease of unknown etiology, and cognitive impairment is one of the more common accompanying symptoms. Functional magnetic resonance imaging (fMRI) can noninvasively evaluate the cerebral hemodynamics, brain microstructure, and brain functional networks of MMD patients, and reveal the pathophysiological mechanisms of cognitive impairment in MMD patients from different perspectives. This article reviews the technical principles of perfusion weighted imaging (PWI), diffusion tensor imaging (DTI), neurite orientation dispersion and density imaging (NODDI), and blood oxygenation level dependent fMRI (BOLD-fMRI) and their application in MMD cognitive impairment. In order to provide a reference direction for the further study of the pathophysiological mechanism of MMD cognitive impairment, and lay a theoretical foundation for the early diagnosis, treatment and evaluation of MMD cognitive impairment.
[Keywords] moyamoya disease;functional magnetic resonance imaging;magnetic resonance imaging;cognitive impairment

FU Lin1   YU Hao2   LIU Deguo2*  

1 Clinical School, Jining Medical University, Jining 272013, China

2 Department of Medical Imaging, Affiliated Hospital of Jining Medical University, Jining 272029, China

Corresponding author: LIU D G, E-mail: sdjnliudeguo@163.com

Conflicts of interest   None.

Received  2023-09-12
Accepted  2024-01-05
DOI: 10.12015/issn.1674-8034.2024.01.032
Cite this article as: FU L, YU H, LIU D G. Advances in functional MRI in cognitive impairment of moyamoya disease[J]. Chin J Magn Reson Imaging, 2024, 15(1): 189-193. DOI:10.12015/issn.1674-8034.2024.01.032.

[1]
FUJIMURA M, TOMINAGA T, KURODA S, et al. 2021 Japanese Guidelines for the Management of Moyamoya Disease: Guidelines from the Research Committee on Moyamoya Disease and Japan Stroke Society[J]. Neurol Med Chir (Tokyo), 2022, 62(4): 165-170. DOI: 10.2176/jns-nmc.2021-0382.
[2]
BORNSTEIN R A. Neuropsychological performance in moya moya disease: a case study[J]. Int J Neurosci, 1985, 26(1-2): 39-46. DOI: 10.3109/00207458508985601.
[3]
KARZMARK P, ZEIFERT P D, BELL-STEPHENS T E, et al. Neurocognitive impairment in adults with moyamoya disease without stroke[J]. Neurosurgery, 2012, 70(3): 634-638. DOI: 10.1227/NEU.0b013e3182320d1a.
[4]
LI J, LIU X, ZHANG D, et al. Cognitive performance profile in pediatric moyamoya disease patients and its relationship with regional cerebral blood perfusion[J/OL]. Front Neurol, 2019, 10: 1308 [2023-09-12]. https://doi.org/10.3389/fneur.2019.01308. DOI: 10.3389/fneur.2019.01308.
[5]
HE S, DUAN R, LIU Z, et al. Characteristics of cognitive impairment in adult asymptomatic moyamoya disease[J/OL]. BMC Neurol, 2020, 20(1): 322 [2023-09-12]. https://doi.org/10.1186/s12883-020-01898-8. DOI: 10.1186/s12883-020-01898-8.
[6]
KRONENBURG A, VAN DEN BERG E, VAN SCHOONEVELD M M, et al. Cognitive functions in children and adults with moyamoya vasculopathy: A systematic review and meta-analysis[J]. J Stroke, 2018, 20(3): 332-341. DOI: 10.5853/jos.2018.01550.
[7]
WILLIAMS D S, DETRE J A, LEIGH J S, et al. Magnetic resonance imaging of perfusion using spin inversion of arterial water[J]. Proc Natl Acad Sci U S A, 1992, 89(1): 212-216. DOI: 10.1073/pnas.89.1.212.
[8]
SSALI T, NARCISO L, HICKS J, et al. Concordance of regional hypoperfusion by pCASL MRI and 15O-water PET in frontotemporal dementia: Is pCASL an efficacious alternative?[J/OL]. Neuroimage Clin, 2022, 33: 102950 [2023-09-12]. https://doi.org/10.1016/j.nicl.2022.102950. DOI: 10.1016/j.nicl.2022.102950.
[9]
SHEN X X, ZHANG H D, FU H G, et al. Association of cognitive function and hypoperfusion in moyamoya disease patients without stroke[J]. J Cereb Blood Flow Metab, 2023, 43(4): 542-551. DOI: 10.1177/0271678X221140349.
[10]
HA J Y, CHOI Y H, LEE S, et al. Arterial spin labeling mri for quantitative assessment of cerebral perfusion before and after cerebral revascularization in children with moyamoya disease[J]. Korean J Radiol, 2019, 20(6): 985-996. DOI: 10.3348/kjr.2018.0651.
[11]
ZHAO M Y, TONG E, DUARTE ARMINDO R, et al. Short‐ and long‐term MRI assessed hemodynamic changes in pediatric moyamoya patients after revascularization[J/OL]. J Magn Reson Imaging, 2023: 28902 [2023-09-12]. https://doi.org/10.1002/jmri.28902. DOI: 10.1002/jmri.28902.
[12]
ZHANG J, XIA C, LIU Y, et al. Comparative study of MR mTI-ASL and DSC-PWI in evaluating cerebral hemodynamics of patients with moyamoya disease[J/OL]. Medicine, 2018, 97(41): e12768 [2023-09-12]. https://doi.org/10.1097/md.0000000000012768. DOI: 10.1097/md.0000000000012768.
[13]
HE S, LIU Z, WEI Y, et al. Impairments in brain perfusion, executive control network, topological characteristics, and neurocognition in adult patients with asymptomatic moyamoya disease[J/OL]. BMC Neurosci, 2021, 22(1): 35 [2023-09-12]. https://doi.org/10.1186/s12868-021-00638-z. DOI: 10.1186/s12868-021-00638-z.
[14]
ZHA X, LIANG Z, ZHENG L, et al. Association of cerebral hemodynamics and cognitive function in adult patients with moyamoya disease: A three-dimensional pseudo-continuous arterial spin labeling study[J/OL]. World Neurosurg, 2023, 175: e447-e454 [2023-09-12]. https://doi.org/10.1016/j.wneu.2023.03.121. DOI: 10.1016/j.wneu.2023.03.121.
[15]
BEAULIEU C. The basis of anisotropic water diffusion in the nervous system-a technical review[J]. NMR Biomed, 2002, 15(7-8): 435-455. DOI: 10.1002/nbm.782.
[16]
WINSTON G P. The physical and biological basis of quantitative parameters derived from diffusion MRI[J]. Quant Imaging Med Surg, 2012, 2(4): 254-265. DOI: 10.3978/j.issn.2223-4292.2012.12.05.
[17]
MIN Z G, SHAN H R, XU L, et al. Diffusion tensor imaging revealed different pathological processes of white matter hyperintensities[J/OL]. BMC Neurol, 2021, 21(1): 128 [2023-09-12]. https://doi.org/10.1186/s12883-021-02140-9. DOI: 10.1186/s12883-021-02140-9.
[18]
TAE W S, HAM B J, PYUN S B, et al. Current clinical applications of diffusion-tensor imaging in neurological disorders[J]. J Clin Neurol, 2018, 14(2): 129-140. DOI: 10.3988/jcn.2018.14.2.129.
[19]
HAO X, LIU Z, HE S, et al. Application of DTI and fMRI in moyamoya disease[J/OL]. Front Neurol, 2022, 13: 948830 [2023-09-12]. https://doi.org/10.3389/fneur.2022.948830. DOI: 10.3389/fneur.2022.948830.
[20]
AHTAM B, SOLTI M, DOO J M, et al. Diffusion-weighted magnetic resonance imaging demonstrates white matter alterations in watershed regions in children with moyamoya without stroke or silent infarct[J]. Pediatr Neurol, 2023, 143: 89-94. DOI: 10.1016/j.pediatrneurol.2023.03.005.
[21]
KAZUMATA K, THA K K, NARITA H, et al. Chronic ischemia alters brain microstructural integrity and cognitive performance in adult moyamoya disease[J]. Stroke, 2015, 46(2): 354-360. DOI: 10.1161/STROKEAHA.114.007407.
[22]
KAZUMATA K, THA K K, TOKAIRIN K, et al. Brain structure, connectivity, and cognitive changes following revascularization surgery in adult moyamoya disease[J/OL]. Neurosurgery, 2019, 85(5): E943-E952 [2023-09-12]. https://pubmed.ncbi.nlm.nih.gov/31157394/. DOI: 10.1093/neuros/nyz176.
[23]
KAZUMATA K, TOKAIRIN K, ITO M, et al. Combined structural and diffusion tensor imaging detection of ischemic injury in moyamoya disease: relation to disease advancement and cerebral hypoperfusion[J]. J Neurosurg, 2020, 134(3): 1155-1164. DOI: 10.3171/2020.1.JNS193260.
[24]
SU J B, XI S D, ZHOU S Y, et al. Microstructural damage pattern of vascular cognitive impairment: a comparison between moyamoya disease and cerebrovascular atherosclerotic disease[J]. Neural Regen Res, 2019, 14(5): 858-867. DOI: 10.4103/1673-5374.249234.
[25]
LIU Z, HE S, XU Z, et al. Association between white matter impairment and cognitive dysfunction in patients with ischemic moyamoya disease[J/OL]. BMC Neurol, 2020, 20(1): 302 [2023-09-12]. https://doi.org/10.1186/s12883-020-01876-0. DOI: 10.1186/s12883-020-01876-0.
[26]
HU J, LI Y, TONG Y, et al. moyamoya disease with initial ischemic or hemorrhagic attack shows different brain structural and functional features: A pilot study[J/OL]. Front Neurol, 2022, 13: 871421 [2023-09-12]. https://doi.org/10.3389/fneur.2022.871421. DOI: 10.3389/fneur.2022.871421.
[27]
CORTINA L E, KIM R W, KIELY M, et al. Cerebral aggregate g-ratio mapping using magnetic resonance relaxometry and diffusion tensor imaging to investigate sex and age-related differences in white matter microstructure[J]. Magn Reson Imaging, 2022, 85: 87-92. DOI: 10.1016/j.mri.2021.10.019.
[28]
WU E X, CHEUNG M M. MR diffusion kurtosis imaging for neural tissue characterization[J]. NMR Biomed, 2010, 23(7): 836-848. DOI: 10.1002/nbm.1506.
[29]
KAZUMATA K, THA K K, NARITA H, et al. Characteristics of diffusional kurtosis in chronic ischemia of adult moyamoya disease: Comparing diffusional kurtosis and diffusion tensor imaging[J]. AJNR Am J Neuroradiol, 2016, 37(8): 1432-1439. DOI: 10.3174/ajnr.A4728.
[30]
SUN R, ZHANG S Y, CHENG X, et al. White matter structural and network topological changes in moyamoya disease with limb paresthesia: A study based on diffusion kurtosis imaging[J/OL]. Front Neurosci, 2022, 16: 1029388 [2023-09-12]. https://doi.org/10.3389/fnins.2022.1029388. DOI: 10.3389/fnins.2022.1029388.
[31]
KAMAGATA K, HATANO T, AOKI S. What is NODDI and what is its role in Parkinson's assessment?[J]. Expert Rev Neurother, 2016, 16(3): 241-243. DOI: 10.1586/14737175.2016.1142876.
[32]
MARTINEZ-HERAS E, GRUSSU F, PRADOS F, et al. Diffusion-weighted imaging: Recent advances and applications[J]. Semin Ultrasound CT MR, 2021, 42(5): 490-506. DOI: 10.1053/j.sult.2021.07.006.
[33]
HARA S, HORI M, MURATA S, et al. Microstructural damage in normal-appearing brain parenchyma and neurocognitive dysfunction in adult moyamoya disease[J]. Stroke, 2018, 49(10): 2504-2507. DOI: 10.1161/STROKEAHA.118.022367.
[34]
PARKER T D, SLATTERY C F, ZHANG J, et al. Cortical microstructure in young onset Alzheimer's disease using neurite orientation dispersion and density imaging[J]. Hum Brain Mapp, 2018, 39(7): 3005-3017. DOI: 10.1002/hbm.24056.
[35]
HARA S, HORI M, UEDA R, et al. Unraveling specific brain microstructural damage in moyamoya disease using diffusion magnetic resonance imaging and positron emission tomography[J]. J Stroke Cerebrovasc Dis, 2019, 28(4): 1113-1125. DOI: 10.1016/j.jstrokecerebrovasdis.2018.12.038.
[36]
HARA S, HORI M, KAMAGATA K, et al. Increased parenchymal free water may be decreased by revascularization surgery in patients with moyamoya disease[J/OL]. Magn Reson Med Sci, 2023 [2023-09-12]. https://doi.org/10.2463/mrms.mp.2022-0146. DOI: 10.2463/mrms.mp.2022-0146.
[37]
KAMIYA K, HORI M, AOKI S. NODDI in clinical research[J/OL]. J Neurosci Methods, 2020, 346: 108908 [2023-09-12]. https://doi.org/10.1016/j.jneumeth.2020.108908. DOI: 10.1016/j.jneumeth.2020.108908.
[38]
ZHENG G, LEI Y, LI Y, et al. Changes in brain functional network connectivity in adult moyamoya diseases[J]. Cogn Neurodyn., 2021, 15(5): 861-872. DOI: 10.1007/s11571-021-09666-1.
[39]
SUN R, ZHANG S Y, CHENG X, et al. Changes in sensory-related brain networks of patients with moyamoya disease with limb paresthesia: A resting-state fMRI-based functional connectivity analysis[J/OL]. Neuroimage Clin, 2022, 36: 103267 [2023-09-12]. https://doi.org/10.1016/j.nicl.2022.103267. DOI: 10.1016/j.nicl.2022.103267.
[40]
LEI Y, CHEN X, SU J B, et al. Recognition of cognitive impairment in adult moyamoya disease: A classifier based on high-order resting-state functional connectivity network[J/OL]. Front Neural Circuits, 2020, 14: 603208 [2023-09-12]. https://doi.org/10.3389/fncir.2020.603208. DOI: 10.3389/fncir.2020.603208.
[41]
GAO M, LAM C L M, LUI W M, et al. Preoperative brain connectome predicts postoperative changes in processing speed in moyamoya disease[J/OL]. Brain Commun, 2022, 4(5): fcac213 [2023-09-12]. https://doi.org/10.1093/braincomms/fcac213. DOI: 10.1093/braincomms/fcac213.
[42]
LEHMAN V T, COGSWELL P M, RINALDO L, et al. Contemporary and emerging magnetic resonance imaging methods for evaluation of moyamoya disease[J/OL]. Neurosurg Focus, 2019, 47(6): E6 [2023-09-12]. https://doi.org/10.3171/2019.9.FOCUS19616. DOI: 10.3171/2019.9.FOCUS19616.
[43]
LEI Y, LI Y, NI W, et al. Spontaneous brain activity in adult patients with moyamoya disease: a resting-state fMRI study[J]. Brain Res, 2014, 1546: 27-33. DOI: 10.1016/j.brainres.2013.12.022.
[44]
LEI Y, SU J, JIANG H, et al. Aberrant regional homogeneity of resting-state executive control, default mode, and salience networks in adult patients with moyamoya disease[J]. Brain Imaging Behav, 2017, 11(1): 176-184. DOI: 10.1007/s11682-016-9518-5.
[45]
TONG Y, HOCKE L M, FREDERICK B B. Low frequency systemic hemodynamic "Noise" in resting state BOLD fMRI: Characteristics, causes, implications, mitigation strategies, and applications[J/OL]. Front Neurosci, 2019, 13: 787 [2023-12-05]. https://doi.org/10.3389/fnins.2019.00787. DOI: 10.3389/fnins.2019.00787.
[46]
HAN C, GAO T X, ZHANG H D, et al. Wavelet analysis of cerebral oxygenation signal measured by near-infrared spectroscopy in moyamoya disease[J/OL]. World Neurosurg, 2023, 172: e12-e18 [2023-12-05]. https://doi.org/10.1016/j.wneu.2022.10.074. DOI: 10.1016/j.wneu.2022.10.074.
[47]
SUN J, SHI Z, YU L, et al. Predictors of preoperative cognitive dysfunction in adults with moyamoya disease: a preliminary research[J/OL]. BMC Neurology, 2022, 22(1): 12 [2023-12-05]. https://doi.org/10.1186/s12883-021-02511-2. DOI: 10.1186/s12883-021-02511-2.
[48]
LEI Y, SONG B, CHEN L, et al. Reconfigured functional network dynamics in adult moyamoya disease: a resting-state fMRI study[J]. Brain Imaging Behav, 2020, 14(3): 715-727. DOI: 10.1007/s11682-018-0009-8.
[49]
HU J, LI Y, LI Z, et al. Abnormal brain functional and structural connectivity between the left supplementary motor area and inferior frontal gyrus in moyamoya disease[J/OL]. BMC Neurol, 2022, 22(1): 179 [2023-09-12]. https://doi.org/10.1186/s12883-022-02705-2. DOI: 10.1186/s12883-022-02705-2.
[50]
HORN A, OSTWALD D, REISERT M, et al. The structural-functional connectome and the default mode network of the human brain[J/OL]. NeuroImage, 2014, 102: 142-151. https://doi.org/10.1016/j.neuroimage.2013.09.069. DOI: 10.1016/j.neuroimage.2013.09.069.
[51]
CHANG C, THOMASON M E, GLOVER G H. Mapping and correction of vascular hemodynamic latency in the BOLD signal[J/OL]. NeuroImage, 2008, 43(1): 90-102 [2023-12-05]. https://doi.org/10.1016/j.neuroimage.2008.06.030. DOI: 10.1016/j.neuroimage.2008.06.030.
[52]
KIM S G, OGAWA S. Biophysical and physiological origins of blood oxygenation level-dependent fMRI signals[J]. J Cereb Blood Flow Metab, 2012, 32(7): 1188-1206 [2023-12-05]. https://doi.org/10.1038/jcbfm.2012.23. DOI: 10.1038/jcbfm.2012.23.

PREV Application of MRI diffusion imaging in temporal lobe epilepsy
NEXT MRI research progress of brain structure and function in patients with cognitive dysfunction after aneurysmal subarachnoid hemorrhage
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn