Share:
Share this content in WeChat
X
Review
MRI research progress of brain structure and function in patients with cognitive dysfunction after aneurysmal subarachnoid hemorrhage
ZHANG Qianjun  LIU Qian  LI Ruili  LU Jie 

Cite this article as: ZHANG Q J, LIU Q, LI R L, et al. MRI research progress of brain structure and function in patients with cognitive dysfunction after aneurysmal subarachnoid hemorrhage[J]. Chin J Magn Reson Imaging, 2024, 15(1): 194-198. DOI:10.12015/issn.1674-8034.2024.01.033.


[Abstract] Aneurysmal subarachnoid hemorrhage (aSAH) is common in young people with high disability and mortality, and over half of the patients have cognitive dysfunction after surgery. Cognitive dysfunction after aSAH is manifested in a variety of areas: language, memory, visual perception, information processing, attention, and executive function. It seriously affects the quality of life of patients, and brings heavy spiritual and economic burden to patients, families and society. Early diagnosis and treatment can help patients recover function and improve quality of life. But its diagnosis requires assessment on a series of neurocognitive scales, which is time-consuming and subjective. MRI is non-invasive and non-radiative. Different cranial imaging techniques including 3D T1WI, diffusion tensor imaging and function MRI applied to patients, we can obtain changes of brain microstructure and function from different perspectives, which offer unique insight into early diagnosis, disease monitoring, prognosis assessment and pathological mechanism of postoperative cognitive dysfunction in aSAH patients. This study aims to explore the MRI parameters related to the early diagnosis of aSAH and the assessment of postoperative cognitive dysfunction by reviewing the research progress of brain structural and functional MRI neuroimaging in patients with cognitive dysfunction afeter aSAH, so as to be beneficial to early treatment and improve prognosis.
[Keywords] aneurysmal subarachnoid hemorrhage;cognitive dysfunction;magnetic resonance imaging;brain structure;brain function

ZHANG Qianjun1, 2   LIU Qian1, 2   LI Ruili1, 2   LU Jie1, 2*  

1 Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China

2 Beijing Key Lab of MRI and Brain Informatics, Beijing 100053, China

Corresponding author: LU J, E-mail: imaginglu@hotmail.com

Conflicts of interest   None.

Received  2023-09-07
Accepted  2024-01-02
DOI: 10.12015/issn.1674-8034.2024.01.033
Cite this article as: ZHANG Q J, LIU Q, LI R L, et al. MRI research progress of brain structure and function in patients with cognitive dysfunction after aneurysmal subarachnoid hemorrhage[J]. Chin J Magn Reson Imaging, 2024, 15(1): 194-198. DOI:10.12015/issn.1674-8034.2024.01.033.

[1]
ZHENG Z V, LAM P K, POON W S, et al. The time course of cognitive deficits in experimental subarachnoid hemorrhage[J]. Acta Neurochir Suppl, 2020, 127: 121-125. DOI: 10.1007/978-3-030-04615-6_18.
[2]
BEECKMANS K, CRUNELLE C L, VAN DEN BOSSCHE J, et al. Cognitive outcome after surgical clipping versus endovascular coiling in patients with subarachnoid hemorrhage due to ruptured anterior communicating artery aneurysm[J]. Acta Neurol Belg, 2020, 120(1): 123-132. DOI: 10.1007/s13760-019-01245-w.
[3]
CHEN C, GUO X, CHEN Y, et al. Predictors of poor-grade aneurysmal subarachnoid hemorrhage caused by anterior communicating artery aneurysm[J/OL]. World Neurosurg, 2021, 148: e340-e345 [2023-09-07]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7703109. DOI: 10.1016/j.wneu.2020.12.140.
[4]
ROETHLISBERGER M, AGHLMANDI S, RYCHEN J, et al. Impact of very small aneurysm size and anterior communicating segment location on outcome after aneurysmal subarachnoid hemorrhage[J]. Neurosurgery, 2023, 92(2): 370-381. DOI: 10.1227/neu.0000000000002212.
[5]
GAO P, JIN Z, WANG P, et al. Effects of intracranial interventional embolization and intracranial clipping on the cognitive and neurologic function of patients with intracranial aneurysms[J]. Arch Clin Neuropsychol, 2022, 37(8): 1688-1698. DOI: 10.1093/arclin/acac030.
[6]
EAGLES M E, TSO M K, MACDONALD R L. Cognitive impairment, functional outcome, and delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage[J/OL]. World Neurosurg, 2019, 124: e558-e562 [2023-09-07]. https://www.sciencedirect.com/science/article/pii/S1878875019300208?via%3Dihub. DOI: 10.1016/j.wneu.2018.12.152.
[7]
GAASTRA B, EWBANK F, TAPPER W, et al. Long-term cognitive outcome following aneurysmal subarachnoid haemorrhage[J/OL]. J Stroke Cerebrovasc Dis, 2022, 31(1): 106184 [2023-09-07]. https://pubmed.ncbi.nlm.nih.gov/34773754/. DOI: 10.1016/j.jstrokecerebrovasdis.2021.106184.
[8]
ROLLNIK J D, ADNER A. Long-term neuropsychological and participation impairment after aneurysmal subarachnoid hemorrhage (asah)[J]. Fortschr Neurol Psychiatr, 2020, 88(1): 33-39. DOI: 10.1055/a-1003-6756.
[9]
NUSSBAUM E S, MIKOFF N, PARANJAPE G S. Cognitive deficits among patients surviving aneurysmal subarachnoid hemorrhage. A contemporary systematic review[J]. Br J Neurosurg, 2021, 35(4): 384-401. DOI: 10.1080/02688697.2020.1859462.
[10]
HAUG NORDENMARK T, KARIC T, SORTEBERG W, et al. Predictors of cognitive function in the acute phase after aneurysmal subarachnoid hemorrhage[J]. Acta Neurochir (Wien), 2019, 161(1): 177-184. DOI: 10.1007/s00701-018-3760-0.
[11]
KHOSDELAZAD S, JORNA L S, RAKERS S E, et al. Long-term course of cognitive functioning after aneurysmal and angiographically negative subarachnoid hemorrhage[J]. Neurosurgery, 2023, 93(6):1235-1243. DOI: 10.1227/neu.0000000000002559.
[12]
AL-KHINDI T, MACDONALD R L, SCHWEIZER T A. Cognitive and functional outcome after aneurysmal subarachnoid hemorrhage[J/OL]. Stroke, 2010, 41(8): e519-e536 [2023-09-07]. https://pubmed.ncbi.nlm.nih.gov/20595669/. DOI: 10.1161/strokeaha.110.581975.
[13]
NASSIRI F, WORKEWYCH A M, BADHIWALA J H, et al. Cognitive outcomes after anterior communicating artery aneurysm repair[J]. Can J Neurol Sci, 2018, 45(4): 415-423. DOI: 10.1017/cjn.2018.16.
[14]
MA N, FENG X, WU Z, et al. Cognitive impairments and risk factors after ruptured anterior communicating artery aneurysm treatment in low-grade patients without severe complications: A multicenter retrospective study[J/OL]. Front Neurol, 2021, 12: 613785 [2023-09-07]. https://pubmed.ncbi.nlm.nih.gov/33643199/. DOI: 10.3389/fneur.2021.613785.
[15]
MONTEJO C, LAREDO C, LLULL L, et al. Synthetic mri in subarachnoid haemorrhage[J/OL]. Clin Radiol, 2021, 76(10): 785.e717-785.e723 [2023-09-07]. https://www.clinicalradiologyonline.net/article/S0009-9260(21)00306-8/fulltext. DOI: 10.1016/j.crad.2021.05.021.
[16]
PREMAT K, AZUAR C, GALANAUD D, et al. Pathomechanisms behind cognitive disorders following ruptured anterior communicating aneurysms: A diffusion tensor imaging study[J]. J Neuroradiol, 2022, 49(2): 187-192. DOI: 10.1016/j.neurad.2021.09.005.
[17]
RAUTALIN I M, SEBÖK M, GERMANS M R, et al. Screening tools for early neuropsychological impairment after aneurysmal subarachnoid hemorrhage[J]. Neurol Sci, 2020, 41(4): 817-824. DOI: 10.1007/s10072-019-04159-w.
[18]
WRIGHT I C, MCGUIRE P K, POLINE J B, et al. A voxel-based method for the statistical analysis of gray and white matter density applied to schizophrenia[J]. Neuroimage, 1995, 2(4): 244-252. DOI: 10.1006/nimg.1995.1032.
[19]
ANBEEK P, VINCKEN K L, VAN BOCHOVE G S, et al. Probabilistic segmentation of brain tissue in mr imaging[J]. Neuroimage, 2005, 27(4): 795-804. DOI: 10.1016/j.neuroimage.2005.05.046.
[20]
REIJMER Y D, VAN DEN HEERIK M S, HEINEN R, et al. Microstructural white matter abnormalities and cognitive impairment after aneurysmal subarachnoid hemorrhage[J]. Stroke, 2018, 49(9): 2040-2045. DOI: 10.1161/strokeaha.118.021622.
[21]
BENDEL P, KOIVISTO T, AIKIÄ M, et al. Atrophic enlargement of csf volume after subarachnoid hemorrhage: Correlation with neuropsychological outcome[J]. AJNR Am J Neuroradiol, 2010, 31(2): 370-376. DOI: 10.3174/ajnr.A1804.
[22]
DE BRESSER J, VINCKEN K L, KASPERS A J, et al. Quantification of cerebral volumes on mri 6 months after aneurysmal subarachnoid hemorrhage[J]. Stroke, 2012, 43(10): 2782-2784. DOI: 10.1161/strokeaha.112.669184.
[23]
STEHOUWER B L, VAN DER KLEIJ L A, HENDRIKSE J, et al. Magnetic resonance imaging and brain injury in the chronic phase after aneurysmal subarachnoid hemorrhage: A systematic review[J]. Int J Stroke, 2018, 13(1): 24-34. DOI: 10.1177/1747493017730781.
[24]
BOERBOOM W, HEIJENBROK-KAL M H, KHAJEH L, et al. Long-term functioning of patients with aneurysmal subarachnoid hemorrhage: A 4-yr follow-up study[J]. Am J Phys Med Rehabil, 2016, 95(2): 112-120. DOI: 10.1097/phm.0000000000000353.
[25]
ALI A, BITIR B, ABDULLAH T, et al. Gray-to-white matter ratio predicts long-term recovery potential of patients with aneurysmal subarachnoid hemorrhage[J]. Neurosurg Rev, 2020, 43(1): 195-202. DOI: 10.1007/s10143-018-1029-y.
[26]
ALI A, TANIRGAN G, SABANCI P A, et al. Relation of gray-white matter ratio with long-term cognitive functions and quality of life in patients with mild to moderate aneurysmal subarachnoid hemorrhage: A prospective observational study[J]. Acta Neurochir (Wien), 2018, 160(1): 181-189. DOI: 10.1007/s00701-017-3374-y.
[27]
LEE G Y, RYU C W, KO H C, et al. Correlation between gray matter volume loss followed by aneurysmal subarachnoid hemorrhage and subarachnoid hemorrhage volume[J]. Neuroradiology, 2020, 62(11): 1401-1409. DOI: 10.1007/s00234-020-02445-5.
[28]
DIBELLA E V R, SHARMA A, RICHARDS L, et al. Beyond diffusion tensor mri methods for improved characterization of the brain after ischemic stroke: A review[J]. AJNR Am J Neuroradiol, 2022, 43(5): 661-669. DOI: 10.3174/ajnr.A7414.
[29]
LOPE-PIEDRAFITA S. Diffusion tensor imaging (dti)[J]. Methods Mol Biol, 2018, 1718: 103-116. DOI: 10.1007/978-1-4939-7531-0_7.
[30]
KOCHUNOV P, THOMPSON P M, LANCASTER J L, et al. Relationship between white matter fractional anisotropy and other indices of cerebral health in normal aging: Tract-based spatial statistics study of aging[J]. Neuroimage, 2007, 35(2): 478-487. DOI: 10.1016/j.neuroimage.2006.12.021.
[31]
TSAPANOU A, HABECK C, GAZES Y, et al. Brain biomarkers and cognition across adulthood[J]. Hum Brain Mapp, 2019, 40(13): 3832-3842. DOI: 10.1002/hbm.24634.
[32]
VELLY L, PERLBARG V, BOULIER T, et al. Use of brain diffusion tensor imaging for the prediction of long-term neurological outcomes in patients after cardiac arrest: A multicentre, international, prospective, observational, cohort study[J]. Lancet Neurol, 2018, 17(4): 317-326. DOI: 10.1016/s1474-4422(18)30027-9.
[33]
NAKAMOTO B K, JAHANSHAD N, MCMURTRAY A, et al. Cerebrovascular risk factors and brain microstructural abnormalities on diffusion tensor images in hiv-infected individuals[J]. J Neurovirol, 2012, 18(4): 303-312. DOI: 10.1007/s13365-012-0106-1.
[34]
SENER S, VAN HECKE W, FEYEN B F, et al. Diffusion tensor imaging: A possible biomarker in severe traumatic brain injury and aneurysmal subarachnoid hemorrhage?[J]. Neurosurgery, 2016, 79(6): 786-793. DOI: 10.1227/neu.0000000000001325.
[35]
HONG J H, CHOI B Y, CHANG C H, et al. Injuries of the cingulum and fornix after rupture of an anterior communicating artery aneurysm: A diffusion tensor tractography study[J]. Neurosurgery, 2012, 70(4): 819-823. DOI: 10.1227/NEU.0b013e3182367124.
[36]
DARWAZEH R, WEI M, ZHONG J, et al. Significant injury of the mammillothalamic tract without injury of the corticospinal tract after aneurysmal subarachnoid hemorrhage: A retrospective diffusion tensor imaging study[J/OL]. World Neurosurg, 2018, 114: e624-e630 [2023-09-07]. https://www.sciencedirect.com/science/article/pii/S1878875018305205?via%3Dihub. DOI: 10.1016/j.wneu.2018.03.042.
[37]
DICK J P, GUILOFF R J, STEWART A, et al. Mini-mental state examination in neurological patients[J]. J Neurol Neurosurg Psychiatry, 1984, 47(5): 496-499. DOI: 10.1136/jnnp.47.5.496.
[38]
JANG S H, CHOI B Y, KIM S H, et al. Injury of the mammillothalamic tract in patients with subarachnoid haemorrhage: A retrospective diffusion tensor imaging study[J/OL]. BMJ Open, 2014, 4(7): e005613 [2023-09-07]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4120333. DOI: 10.1136/bmjopen-2014-005613.
[39]
RAIMONDO L, OLIVEIRA Ĺ A F, HEIJ J, et al. Advances in resting state fmri acquisitions for functional connectomics[J/OL]. NeuroImage, 2021, 243: 118503 [2023-09-07]. https://pubmed.ncbi.nlm.nih.gov/34479041/. DOI: 10.1016/j.neuroimage.2021.118503.
[40]
NUNES D, IANUS A, SHEMESH N. Layer-specific connectivity revealed by diffusion-weighted functional mri in the rat thalamocortical pathway[J]. NeuroImage, 2019, 184: 646-657. DOI: 10.1016/j.neuroimage.2018.09.050.
[41]
SNIDER S B, EDLOW B L. MRI in disorders of consciousness[J]. Curr Opin Neurol, 2020, 33(6): 676-683. DOI: 10.1097/wco.0000000000000873.
[42]
SU J, E T, GUO Q, et al. Memory deficits after aneurysmal subarachnoid hemorrhage: A functional magnetic resonance imaging study[J/OL]. World Neurosurg, 2018, 111: e500-e506 [2023-09-07]. https://www.sciencedirect.com/science/article/pii/S1878875017322180?via%3Dihub. DOI: 10.1016/j.wneu.2017.12.102.
[43]
SMALLWOOD J, BERNHARDT B C, LEECH R, et al. The default mode network in cognition: A topographical perspective[J]. Nat Rev Neurosci, 2021, 22(8): 503-513. DOI: 10.1038/s41583-021-00474-4.
[44]
KOLSKåR K K, RICHARD G, ALNAES D, et al. Reliability, sensitivity, and predictive value of fmri during multiple object tracking as a marker of cognitive training gain in combination with tdcs in stroke survivors[J]. Hum Brain Mapp, 2021, 42(4): 1167-1181. DOI: 10.1002/hbm.25284.
[45]
PLATA-BELLO J, MODROñO C, ACOSTA-LÓPEZ S, et al. Subarachnoid hemorrhage and visuospatial and visuoperceptive impairment: Disruption of the mirror neuron system[J]. Brain Imaging Behav, 2017, 11(5): 1538-1547. DOI: 10.1007/s11682-016-9609-3.
[46]
MIKELL C B, BANKS G P, FREY H P, et al. Frontal networks associated with command following after hemorrhagic stroke[J]. Stroke, 2015, 46(1): 49-57. DOI: 10.1161/strokeaha.114.007645.
[47]
MAHER M, CHURCHILL N W, DE OLIVEIRA MANOEL A L, et al. Altered resting-state connectivity within executive networks after aneurysmal subarachnoid hemorrhage[J/OL]. PloS one, 2015, 10(7): e0130483. [2023-09-07]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4501762. DOI: 10.1371/journal.pone.0130483.
[48]
CHEN F, KANG Y, YU T, et al. Altered functional connectivity within default mode network after rupture of anterior communicating artery aneurysm[J/OL]. Front Aging Neurosci, 2022, 14: 905453 [2023-09-07]. https://pubmed.ncbi.nlm.nih.gov/35959287/. DOI: 10.3389/fnagi.2022.905453.
[49]
CHO M K, JANG S H. Diffusion tensor imaging studies on spontaneous subarachnoid hemorrhage-related brain injury: A mini-review[J/OL]. Front Neurol, 2020, 11: 283 [2023-09-07]. https://pubmed.ncbi.nlm.nih.gov/32411076/. DOI: 10.3389/fneur.2020.00283.
[50]
CHEN F, CAI J, DAI L, et al. Altered hippocampal functional connectivity after the rupture of anterior communicating artery aneurysm[J/OL]. Front Aging Neurosci, 2022, 14: 997231 [2023-09-07]. https://pubmed.ncbi.nlm.nih.gov/36420312/. DOI: 10.3389/fnagi.2022.997231.
[51]
SONG Y, XU W, CHEN S, et al. Functional mri-specific alterations in salience network in mild cognitive impairment: An ale meta-analysis[J/OL]. Front Aging Neurosci, 2021, 13: 695210 [2023-09-07]. https://pubmed.ncbi.nlm.nih.gov/34381352/. DOI: 10.3389/fnagi.2021.695210.
[52]
CHEN H, SHENG X, LUO C, et al. The compensatory phenomenon of the functional connectome related to pathological biomarkers in individuals with subjective cognitive decline[J/OL]. Transl Neurodegener, 2020, 9(1): 21 [2023-09-07]. https://pubmed.ncbi.nlm.nih.gov/32460888/. DOI: 10.1186/s40035-020-00201-6.
[53]
YOUNES K, BORGHESANI V, MONTEMBEAULT M, et al. Right temporal degeneration and socioemotional semantics: Semantic behavioural variant frontotemporal dementia[J]. Brain, 2022, 145(11): 4080-4096. DOI: 10.1093/brain/awac217.
[54]
GEIER K T, BUCHSBAUM B R, PARIMOO S, et al. The role of anterior and medial dorsal thalamus in associative memory encoding and retrieval[J/OL]. Neuropsychologia, 2020, 148: 107623 [2023-09-07]. https://pubmed.ncbi.nlm.nih.gov/32918952/. DOI: 10.1016/j.neuropsychologia.2020.107623.
[55]
ROY D S, ZHANG Y, AIDA T, et al. Anterior thalamic circuits crucial for working memory[J/OL]. Proc Natl Acad Sci U S A, 2022, 119(20): e2118712119 [2023-09-07]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9171768. DOI: 10.1073/pnas.2118712119.
[56]
CHAHAL N, BARKER-COLLO S, FEIGIN V. Cognitive and functional outcomes of 5-year subarachnoid haemorrhage survivors: Comparison to matched healthy controls[J]. Neuroepidemiology, 2011, 37(1): 31-38. DOI: 10.1159/000328647.
[57]
YESHURUN Y, NGUYEN M, HASSON U. The default mode network: Where the idiosyncratic self meets the shared social world[J]. Nat Rev Neurosci, 2021, 22(3): 181-192. DOI: 10.1038/s41583-020-00420-w.
[58]
IBRAHIM B, SUPPIAH S, IBRAHIM N, et al. Diagnostic power of resting-state fmri for detection of network connectivity in alzheimer's disease and mild cognitive impairment: A systematic review[J]. Hum Brain Mapp, 2021, 42(9): 2941-2968. DOI: 10.1002/hbm.25369.

PREV Advances in functional MRI in cognitive impairment of moyamoya disease
NEXT Advances in diffusion magnetic resonance imaging of cerebral white matter and cognitive impairment in patients with obstructive sleep apnoea
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn