Share:
Share this content in WeChat
X
Review
Progress in multimodal MRI study of diabetic peripheral neuropathy
WANG Liqin  CAO Danna  GAO Zhaohong  HU Jing  GAO Shenglan  LI Xiaoling 

Cite this article as: WANG L Q, CAO D N, GAO Z H, et al. Progress in multimodal MRI study of diabetic peripheral neuropathy[J]. Chin J Magn Reson Imaging, 2024, 15(1): 211-216. DOI:10.12015/issn.1674-8034.2024.01.036.


[Abstract] Diabetes peripheral neuropathy (DPN) is a relatively common chronic complication of diabetes mellitus, which seriously affects the quality of life of patients.The pathogenesis of DPN is complex, and current studies have shown that it is closely related to neuropathic changes. In recent years, multimodal magnetic resonance imaging (MRI) has achieved long progress. MRI is famous for its high soft tissue resolution, non-invasive, non-radiation, and has become an important method to explore the pathogenesis of central and peripheral nerves in DPN. In this paper, voxel-based morphometry (VBM), diffusion tensor imaging (DTI), and functional MRI (fMRI) are applied to review the literature on the study of DPN brain structure, brain function changes, and peripheral nerve structure abnormalities. The literature on DPN brain structure, brain function changes, and peripheral nerve structure abnormalities will be reviewed to provide a basis for early clinical diagnosis and precise treatment plans.
[Keywords] diabetic peripheral neuropathy;magnetic resonance imaging;multimodal;structural magnetic resonance imaging;functional magnetic resonance imaging;diffusion tensor imaging;magnetic resonance spectroscopic imaging;perfusion-weighted imaging

WANG Liqin1   CAO Danna2   GAO Zhaohong3   HU Jing4   GAO Shenglan4   LI Xiaoling2*  

1 Nursing Teaching and Research Section, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150040, China

2 Department of CT & MR, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150040, China

3 Department of Nursing Teaching and Research, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150040, China

4 Graduate School of Heilongjiang University of Traditional Chinese Medicine, Harbin 150040, China

Corresponding author: LI X L, E-mail: lixiaoling1525@163.com

Conflicts of interest   None.

Received  2023-08-29
Accepted  2024-01-09
DOI: 10.12015/issn.1674-8034.2024.01.036
Cite this article as: WANG L Q, CAO D N, GAO Z H, et al. Progress in multimodal MRI study of diabetic peripheral neuropathy[J]. Chin J Magn Reson Imaging, 2024, 15(1): 211-216. DOI:10.12015/issn.1674-8034.2024.01.036.

[1]
SAEEDI P, PETERSOHN I, SALPEA P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition[J/OL]. Diabetes Res Clin Pract, 2019, 157: 107843 [2023-08-29]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7316953/. DOI: 10.1016/j.diabres.2019.107843.
[2]
ZHANG Q, SONG W, LIANG X C. Application and progress of metabolomics in the study of diabetic neuropathy[J]. Acta Academiae Medicinae Sinicae, 2022, 44(2): 313-317.
[3]
YU Y. Gold standard for diagnosis of DPN[J/OL]. Front Endocrinol (Lausanne), 2021, 12: 719356 [2023-08-29]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8576350/. DOI: 10.3389/fendo.2021.719356.
[4]
CARMICHAEL J, FADAVI H, ISHIBASHI F, et al. Advances in screening, early diagnosis and accurate staging of diabetic neuropathy[J/OL]. Front Endocrinol (Lausanne), 2021, 12: 671257 [2023-08-29]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8188984/. DOI: 10.3389/fendo.2021.671257.
[5]
KAMIYA H, SHIBATA Y, HIMENO T, et al. Point-of-care nerve conduction device predicts the severity of diabetic polyneuropathy: A quantitative, but easy-to-use, prediction model[J] Diabetes Investig, 2021, 12(4): 583-591. DOI: 10.1111/jdi.13386.
[6]
MARTÍN NOGUEROL T, BAROUSSE R. Update in the evaluation of peripheral nerves by MRI, from morphological to functional neurography. Actualización en la valoración de los nervios periféricos mediante resonancia magnética: de la neurografía morfológica a la funcional[J]. Radiologia (Engl Ed), 2020, 62(2): 90-101. DOI: 10.1016/j.rx.2019.06.005.
[7]
WEI H H, YANG Y, FU F F, et al. Progress in the diagnosis and prognosis prediction of glioma based on multimodal MRI imaging omics and deep learning[J]. Chin J Magn Reson Imaging, 2023, 14(5): 175-180. DOI: 10.12015/issn.1674-8034.2023.05.031.
[8]
LU Z K, NIU J L. Progress in brain structure and fMRI in chronic pruritic disease[J]. Chin J Magn Reson Imaging, 2023, 14(5): 150-154. DOI: 10.12015/issn.1674-8034.2023.05.026.
[9]
RUMORA A E, SAVELIEFF M G, SAKOWSKI S A, et al. Disorders of mitochondrial dynamics in peripheral neuropathy: Clues from hereditary neuropathy and diabetes[J]. Int Rev Neurobiol, 2019, 145: 127-176. DOI: 10.1016/bs.irn.2019.05.002.
[10]
SLOAN G, SELVARAJAH D, TESFAYE S. Pathogenesis, diagnosis and clinical management of diabetic sensorimotor peripheral neuropathy[J]. Nat Rev Endocrinol, 2021, 17(7): 400-420. DOI: 10.1038/s41574-021-00496-z.
[11]
WU T X, LI L B, FANG Y Y, et al. Progress in the mechanism of diabetic peripheral neuropathy and the therapeutic effect of ɑ -lipoic acid[J]. Chinese Journal of Gerontology, 2023, 43(8): 2029-2036. DOI: 10.3969/j.issn.1005-9202.2023.08.060.
[12]
CHAI Y L, WANG G Q, ZHAN Q, et al. Progress on the mechanism of action in the treatment of diabetic peripheral neuropathy[J]. Journal of Changchun University of Traditional Chinese Medicine, 2023, 39(7): 822-826. DOI: 10.13463/j.cnki.cczyy.2023.07.025.
[13]
YANG K, WANG Y, LI Y W, et al. Progress in the treatment of diabetic peripheral neuropathy[J/OL]. Biomed Pharmacother, 2022, 148: 112717 [2023-08-29]. https://linkinghub.elsevier.com/retrieve/pii/S0753-3322(22)00105-6. DOI: 10.1016/j.biopha.2022.112717.
[14]
TANG H Y, JIANG A J, MA J L, et al. Understanding the signaling pathways related to the mechanism and treatment of diabetic peripheral neuropathy[J]. Endocrinology, 2019, 160(9): 2119-2127. DOI: 10.1210/en.2019-00311.
[15]
GALIERO R, CATURANO A, VETRANO E, et al. Peripheral neuropathy in diabetes mellitus: Pathogenetic mechanisms and diagnostic options[J/OL]. Int J Mol Sci, 2023, 24(4): 3554 [2023-08-29]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9967934/. DOI: 10.3390/ijms24043554.
[16]
DECROLI E, MANAF A, SYAHBUDDIN S, et al. The correlation between malondialdehyde and nerve growth factor serum level with diabetic peripheral neuropathy score[J]. Open Access Maced J Med Sci, 2019, 7(1): 103-106. DOI: 10.3889/oamjms.2019.029.
[17]
ZAINO B, GOEL R, DEVARAGUDI S, et al. Diabetic neuropathy: Pathogenesis and evolving principles of management[J/OL]. Dis Mon, 2023, 101582 [2023-08-29]. https://pubmed.ncbi.nlm.nih.gov/37164794/. DOI: 10.1016/j.disamonth.2023.101582.
[18]
LIU Y X, YE L, SHAO Y. Progress in voxel-based morphological measurements in ophthalmic diseases[J]. Chin J Magn Reson Imaging, 2018, 9(9): 694-698. DOI: 10.12015/issn.1674-8034.2018.09.010.
[19]
SELVARAJAH D, WILKINSON I D, MAXWELL M, et al. Magnetic resonance neuroimaging study of brain structural differences in diabetic peripheral neuropathy[J]. Diabetes Care, 2014, 37: 1681-1688. DOI: 10.2337/dc13-2610.
[20]
HANSEN T M, MUTHULINGAM J A, BROCK B, et al. Reduced gray matter brain volume and cortical thickness in adults with type 1 diabetes and neuropathy[J]. Neurosci Res, 2022, 176: 66-72. DOI: 10.1016/j.neures.2021.10.002.
[21]
SELVARAJAH D, SLOAN G, TEH K, et al. Structural brain alterations in key somatosensory and nociceptive regions in diabetic peripheral neuropathy[J]. Diabetes Care, 2023, 46(4): 777-785. DOI: 10.2337/dc22-1123.
[22]
YANG M H, YANG G S, LIN H, et al. Analysis of gray matter volume in diabetic peripheral neuropathy[J]. J Chin Physician, 2022, 24(4): 543-546. DOI: 10.3760/cma.j.cn431274-20210606-00624.
[23]
AURIAT A M, BORICH M R, SNOW N J, et al. Comparing a diffusion tensor and non-tensor approach to white matter fiber tractography in chronic stroke[J]. Neuroimage Clin, 2015, 7: 771-781. DOI: 10.1016/j.nicl.2015.03.007.
[24]
JANG S H, SEO J P. Diffusion tensor tractography studies on injured anterior cingulum recovery mechanisms: A mini-review[J/OL]. Front Neurol, 2018, 9: 1073 [2023-08-29]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6292955/. DOI: 10.3389/fneur.2018.01073.
[25]
WANG X, LUO L, XING J, et al. Assessment of peripheral neuropathy in type 2 diabetes by diffusion tensor imaging[J]. Quant Imaging Med Surg, 2022, 12(1): 395-405. DOI: 10.21037/qims-21-126.
[26]
FANG F, LUO Q, GE R B, et al. Decreased microstructural integrity of the central somatosensory tracts in diabetic peripheral neuropathy[J]. J Clin Endocrinol Metab, 2021, 106(6): 1566-1575. DOI: 10.1210/clinem/dgab158.
[27]
VAEGGEMOSE M, HAAKMA W, PHAM M, et al. Diffusion tensor imaging MR Neurography detects polyneuropathy in type 2 diabetes[J/OL]. J Diabetes Complications, 2020, 34(2): 107439 [2023-08-29]. https://linkinghub.elsevier.com/retrieve/pii/S1056-8727(18)30726-8. DOI: 10.1016/j.jdiacomp.2019.107439.
[28]
KELLE B, EVRAN M, BALLI T, et al. Diabetic peripheral neuropathy:Correlation between nerve cross-sectional area on ultrasound and clinical features[J]. J Back Musculoskelet Rehabil, 2016, 29: 717-722. DOI: 10.3233/BMR-160676.
[29]
STOUGE A, KHAN K S, KRISTENSEN A G, et al. MRI of skeletal muscles in participants with type 2 diabetes with or without diabetic polyneuropathy[J]. Radiology, 2020, 297(3): 608-619. DOI: 10.1148/radiol.2020192647.
[30]
VAEGGEMOSE M, PHAM M, RINGGAARD S, et al. Magnetic resonance neurography visualizes abnormalities in sciatic and tibial nerves in patients with type 1 diabetes and neuropathy[J]. Diabetes, 2017, 66: 1779-1788. DOI: 10.2337/db16-1049.
[31]
LUO L, LI Y, ZUO M Z, et al. Application of magnetic resonance DTI in peripheral neuropathy in type 2 diabetes[J]. J Clin Radiol, 2021, 40(10): 1865-1868. DOI: 10.13437/j.cnki.jcr.2021.10.006.
[32]
WU C, WANG G, ZHAO Y, et al. Assessment of tibial and common peroneal nerves in diabetic peripheral neuropathy by diffusion tensor imaging: a case control study[J]. Eur Radiol, 2017, 27(8): 3523-3531. DOI: 10.1007/s00330-016-4698-3.
[33]
MOON H S, JIANG H, VO T T, et al. Contribution of Excitatory and Inhibitory Neuronal Activity to BOLD fMRI[J]. Cereb Cortex, 2021, 31(9): 4053-4067. DOI: 10.1093/cercor/bhab068.
[34]
DMITRIEV A Y, DASHYAN V G. Functional magnetic resonance imaging in neurosurgery[J]. Zh Nevrol Psikhiatr Im S S Korsakova, 2021, 121(7): 118-123. DOI: 10.17116/jnevro2021121071118.
[35]
HAN Y, ZHANG H. Progress in resting-state functional magnetic resonance imaging-related studies for post-stroke aphasia[J]. Chin J Magn Reson Imaging, 2023, 14(3): 153-158. DOI: 10.12015/issn.1674-8034.2023.03.028.
[36]
SCHAEFER A, KONG R, GORDON E M, et al. Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI[J]. Cereb Cortex, 2018, 28(9): 3095-3114. DOI: 10.1093/cercor/bhx179.
[37]
KANDALEFT D, MURAYAMA K, ROESCH E, et al. Resting-state functional connectivity does not predict individual differences in the effects of emotion on memory[J/OL]. Sci Rep, 2022, 12(1): 14481 [2023-08-29]. http://doi.org/10.1038/s41598-022-18543-8. DOI: 10.1038/s41598-022-18543-8.
[38]
QIU H, LI X, LUO Q, et al. Alterations in patients with major depressive disorder before and after electroconvulsive therapy measured by fractional amplitude of low-frequency fluctuations(fALFF)[J]. J Affect Disord, 2019, 244: 92-99. DOI: 10.1016/j.jad.2018.10.099.
[39]
ZENG Z, LUO L, CHEN Q. Use of resting-state fMRI in the study of mild traumatic brain injury[J]. Chin J Magn Reson Imaging, 2023, 14(10): 167-170. DOI: 10.12015/issn.1674-8034.2023.10.030.
[40]
XIN H, FU Y, FENG M, et al. Altered intrinsic brain activity related to neurologic and motor dysfunction in diabetic peripheral neuropathy patients[J]. J Clin Endocrinol Metab, 2023, 108(4): 802-811. DOI: 10.1210/clinem/dgac651.
[41]
QIU L J, TAN X L, ZOU M C, et al. Changes in regional homogeneity of brain activity in patients with diabetic peripheral[J]. Nan Fang Yi Ke Da Xue Xue Bao, 2018, 38(12): 1433-1439. DOI: 10.12122/j.issn.1673-4254.2018.12.06.
[42]
CAUDA F, D'AGATA F, SACCO K, et al. Altered resting state attentional networks in diabetic neuropathic pain[J]. J Neurol Neurosurg Psychiatry, 2010, 81(7): 806-811. DOI: 10.1136/jnnp.2009.188631.
[43]
TEH K, WILKINSON I D, HEIBERG-GIBBONS F, et al. Somatosensory network functional connectivity differentiates clinical pain phenotypes in diabetic neuropathy[J]. Diabetologia, 2021, 64(6): 1412-1421. DOI: 10.1007/s00125-021-05416-4.
[44]
HILLMAN E M. Coupling mechanism and significance of the BOLD signal: a status report[J]. Annu Rev Neurosci, 2014, 37: 161-181. DOI: 10.1146/annurev-neuro-071013-014111.
[45]
VENKATARAMAN K, PUN V, MOHAMED A Z, et al. Altered motor and motor perceptual cognitive imagery task-related activation in diabetic peripheral neuropathy: Insights from functional MRI[J]. Diabetes Care, 2019, 42(10): 2004-2007. DOI: 10.2337/dc19-0746.
[46]
LI J, ZHANG W, WANG X, et al. Functional magnetic resonance imaging reveals differences in brain activation in response to thermal stimuli in diabetic patients with and without diabetic peripheral neuropathy[J/OL]. PLoS One, 2018, 13(1): e0190699 [2023-08-29]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5755882/. DOI: 10.1371/journal.pone.0190699.
[47]
STOVELL M G, YAN J L, SLEIGH A, et al. Assessing metabolism and injury in acute human traumatic brain injury with magnetic resonance spectroscopy: Current and future applications[J/OL]. Front Neurol, 2017, 428: 426 [2023-08-29]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5600917/. DOI: 10.3389/fneur.2017.00426.
[48]
WANG L N, XIAO Y. Proton magnetic resonance spectroscopy imaging of the thalamus in patients with type 2 diabetes[J]. Medical Journal of Communications, 2022, 36(6): 632-635. DOI: 10.19767/j.cnki.32-1412.2022.06.025.
[49]
GANDHI R, SELVARAJAH D, SLOAN G, et al. Preservation of thalamic neuronal function may be a prerequisite for pain perception in diabetic neuropathy: A magnetic resonance spectroscopy study[J/OL]. Front Pain Res (Lausanne), 2023, 3: 1086887 [2023-08-29]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9852821/. DOI: 10.3389/fpain.2022.1086887.
[50]
HANSEN T M, BROCK B, JUHL A, et al. Brain spectroscopy reveals that N-acetylaspartate is associated to peripheral sensorimotor neuropathy in type 1 diabetes[J]. J Diabetes Complications, 2019, 33(4): 323-328. DOI: 10.1016/j.jdiacomp.2018.12.016.
[51]
ZHANG G Z B, DING C W. Progress in magnetic resonance perfusion imaging in parotid tumors[J]. Chin J Med Imaging, 2023, 31(2): 175-179, 184. DOI: 10.3969/j.issn.1005-5185.2023.02.017.
[52]
DELVECCHIO G, GRITTI D, SQUARCINA L, et al. Neurovascular alterations in bipolar disorder: A review of perfusion weighted magnetic resonance imaging studies[J]. J Affect Disord, 2022, 316: 254-272. DOI: 10.1016/j.jad.2022.07.059.
[53]
SELVARAJAH D, WILKINSON I D, GANDHI R, et al. Microvascular perfusion abnormalities of the thalamus in painful but not painless diabetic polyneuropathy: a clue to the pathogenesis of pain in type 1 diabetes[J]. Diabetes Care, 2011, 34(3): 718-720. DOI: 10.2337/dc10-155.
[54]
SONG J, CUI S, CHEN Y, et al. Disrupted regional cerebral blood flow in children with newly-diagnosed type 1 diabetes mellitus: An arterial spin labeling perfusion magnetic resonance imaging study[J/OL]. Front Neurol, 2020, 11: 572 [2023-08-29]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7316953/. DOI: 10.3389/fneur.2020.00572.

PREV Current status and research progress of MRI for thyroid-associated ophthalmopathy
NEXT Progress in the application of different functional magnetic resonance imaging techniques in breast cancer
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn