Share:
Share this content in WeChat
X
Review
Progress in the application of different functional magnetic resonance imaging techniques in breast cancer
FENG Wen  LIU Xinran  LU Xingru  LEI Junqiang 

Cite this article as: FENG W, LIU X R, LU X R, et al. Progress in the application of different functional magnetic resonance imaging techniques in breast cancer[J]. Chin J Magn Reson Imaging, 2024, 15(1): 217-223. DOI:10.12015/issn.1674-8034.2024.01.037.


[Abstract] Breast cancer is the number one cancer in the world. Fully understanding the application of different functional magnetic resonance imaging techniques in breast cancer is conducive to promoting the development of breast cancer diagnosis and treatment. This paper introduced the excellent clinical and scientific value of different functional magnetic resonance imaging techniques in early diagnosis and late prognosis of breast cancer, with making use of perfusion, metabolism, diffusion and synthetic magnetic resonance imaging, so that the characteristics of the permeability, distribution and hemodynamic state of the microvascular of tumor tissue, the content of metabolites, the change of tumor stroma and the inherent attribute can be visualized. This paper aimed at summarizing the advantages and prospects of various MRI imaging sequences of breast cancer, in order to provide a new direction for the future research, so as to help radiologists more comprehensively understand the MRI techniques of breast cancer.
[Keywords] breast cancer;multimodality;magnetic resonance imaging;functional magnetic resonance imaging;synthetic magnetic resonance imaging;radiological technology

FENG Wen1, 2, 3, 4   LIU Xinran1, 2, 3, 4   LU Xingru2, 3, 4   LEI Junqiang2, 3, 4*  

1 The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China

2 Department of Radiology, the First Hospital of Lanzhou University, Lanzhou 730000, China

3 Intelligent Imaging Medical Engineering Research Center of Gansu Province, Lanzhou 730000, China

4 Gansu Province Clinical Research Center for Radiology Imaging, Lanzhou 730000, China

Corresponding author: LEI J Q, E-mail: leijq2011@126.com

Conflicts of interest   None.

Received  2022-09-09
Accepted  2024-01-04
DOI: 10.12015/issn.1674-8034.2024.01.037
Cite this article as: FENG W, LIU X R, LU X R, et al. Progress in the application of different functional magnetic resonance imaging techniques in breast cancer[J]. Chin J Magn Reson Imaging, 2024, 15(1): 217-223. DOI:10.12015/issn.1674-8034.2024.01.037.

[1]
WARD Z J, ATUN R, HRICAK H, et al. The impact of scaling up access to treatment and imaging modalities on global disparities in breast cancer survival: a simulation-based analysis[J]. Lancet Oncol, 2021, 22(9): 1301-1311. DOI: 10.1016/S1470-2045(21)00403-4.
[2]
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
[3]
ŁUKASIEWICZ S, CZECZELEWSKI M, FORMA A, et al. Breast cancer-epidemiology, risk factors, classification, prognostic markers, and current treatment strategies-an updated review[J/OL]. Cancers, 2021, 13(17): 4287 [2023-09-08]. https://pubmed.ncbi.nlm.nih.gov/34503097/. DOI: 10.3390/cancers13174287.
[4]
WANG G S, GUO Q, SHI D F, et al. Clinical breast MRI-based radiomics for distinguishing benign and malignant lesions: an analysis of sequences and enhanced phases[J/OL]. J Magn Reson Imaging, 2023 [2023-09-08]. https://pubmed.ncbi.nlm.nih.gov/38006286/. DOI: 10.1002/jmri.29150.
[5]
HUANG Y, CAO Y, HU X F, et al. Early identification of pathologic complete response to neoadjuvant chemotherapy using multiphase DCE-MRI by Siamese network in breast cancer: a longitudinal multicenter study[J/OL]. J Magn Reson Imaging, 2023 [2023-09-08]. https://pubmed.ncbi.nlm.nih.gov/38109316/. DOI: 10.1002/jmri.29188.
[6]
SHI Z W, HUANG X M, CHENG Z L, et al. MRI-based quantification of intratumoral heterogeneity for predicting treatment response to neoadjuvant chemotherapy in breast cancer[J/OL]. Radiology, 2023, 308(1): e222830 [2023-09-08]. https://pubmed.ncbi.nlm.nih.gov/37432083/. DOI: 10.1148/radiol.222830.
[7]
SAIKIA S, SI T, DEB D, et al. Lesion detection in women breast's dynamic contrast-enhanced magnetic resonance imaging using deep learning[J/OL]. Sci Rep, 2023, 13(1): 22555 [2023-09-08]. https://pubmed.ncbi.nlm.nih.gov/38110462/. DOI: 10.1038/s41598-023-48553-z.
[8]
MEYER-BASE A, MORRA L, TAHMASSEBI A, et al. AI-enhanced diagnosis of challenging lesions in breast MRI: a methodology and application primer[J]. J Magn Reson Imaging, 2021, 54(3): 686-702. DOI: 10.1002/jmri.27332.
[9]
BUCHBENDER S, OBENAUER S, MOHRMANN S, et al. Arterial spin labelling perfusion MRI of breast cancer using FAIR TrueFISP: initial results[J/OL]. Clin Radiol, 2013, 68(3): e123-e127 [2023-09-08]. https://pubmed.ncbi.nlm.nih.gov/23245275/. DOI: 10.1016/j.crad.2012.10.011.
[10]
FRANKLIN S L, VOORMOLEN N, BONES I K, et al. Feasibility of velocity-selective arterial spin labeling in breast cancer patients for noncontrast-enhanced perfusion imaging[J]. J Magn Reson Imaging, 2021, 54(4): 1282-1291. DOI: 10.1002/jmri.27781.
[11]
MENG L S, ZHAO X, LU L, et al. A comparative assessment of MR BI-RADS 4 breast lesions with Kaiser score and apparent diffusion coefficient value[J/OL]. Front Oncol, 2021, 11: 779642 [2023-09-08]. https://pubmed.ncbi.nlm.nih.gov/34926290/. DOI: 10.3389/fonc.2021.779642.
[12]
XU H, LIU J K, CHEN Z, et al. Intratumoral and peritumoral radiomics based on dynamic contrast-enhanced MRI for preoperative prediction of intraductal component in invasive breast cancer[J]. Eur Radiol, 2022, 32(7): 4845-4856. DOI: 10.1007/s00330-022-08539-3.
[13]
GAN L Y, MA M M, LIU Y H, et al. A clinical-radiomics model for predicting axillary pathologic complete response in breast cancer with axillary lymph node metastases[J/OL]. Front Oncol, 2021, 11: 786346 [2023-09-08]. https://pubmed.ncbi.nlm.nih.gov/34993145/. DOI: 10.3389/fonc.2021.786346.
[14]
MORRISON C K, HENZE BANCROFT L C, DEMARTINI W B, et al. Novel high spatiotemporal resolution versus standard-of-care dynamic contrast-enhanced breast MRI: comparison of image quality[J]. Invest Radiol, 2017, 52(4): 198-205. DOI: 10.1097/RLI.0000000000000329.
[15]
SARANATHAN M, RETTMANN D W, HARGREAVES B A, et al. Variable spatiotemporal resolution three-dimensional Dixon sequence for rapid dynamic contrast-enhanced breast MRI[J]. J Magn Reson Imaging, 2014, 40(6): 1392-1399. DOI: 10.1002/jmri.24490.
[16]
KIM J H, PARK V Y, SHIN H J, et al. Ultrafast dynamic contrast-enhanced breast MRI: association with pathologic complete response in neoadjuvant treatment of breast cancer[J]. Eur Radiol, 2022, 32(7): 4823-4833. DOI: 10.1007/s00330-021-08530-4.
[17]
RAMTOHUL T, TESCHER C, VAFLARD P, et al. Prospective evaluation of ultrafast breast MRI for predicting pathologic response after neoadjuvant therapies[J]. Radiology, 2022, 305(3): 565-574. DOI: 10.1148/radiol.220389.
[18]
STADLBAUER A, ZIMMERMANN M, BENNANI-BAITI B, et al. Development of a non-invasive assessment of hypoxia and neovascularization with magnetic resonance imaging in benign and malignant breast tumors: initial results[J]. Mol Imaging Biol, 2019, 21(4): 758-770. DOI: 10.1007/s11307-018-1298-4.
[19]
WU K W, WU R H, ZHANG M M. Preliminary study of breast cancer in magnetic resonance imaging based on amide proton transfer[J]. Funct Mol Med Imag Electron Ed, 2013, 2(1): 41-46. DOI: 10.3969/j.issn.2095-2252.2013.01.008.
[20]
WANG X J, WANG J, LIU W L, et al. Amide proton transfer-weighted imaging and diffusion weighted imaging in differential diagnosis of benign and malignant breast lesions[J]. Chin J Med Imag Technol, 2020, 36(12): 1820-1824. DOI: 10.13929/j.issn.1003-3289.2020.12.013.
[21]
LIU Z, WEN J, WANG M, et al. Breast amide proton transfer imaging at 3T: diagnostic performance and association with pathologic characteristics[J]. J Magn Reson Imaging, 2023, 57(3): 824-833. DOI: 10.1002/jmri.28335.
[22]
ZHANG S, RAUCH G M, ADRADA B E, et al. Assessment of early response to neoadjuvant systemic therapy in triple-negative breast cancer using amide proton transfer-weighted chemical exchange saturation transfer MRI: a pilot study[J/OL]. Radiol Imaging Cancer, 2021, 3(5): e200155 [2023-09-08]. https://pubmed.ncbi.nlm.nih.gov/34477453/. DOI: 10.1148/rycan.2021200155.
[23]
ZHANG N, KANG J Y, WANG H L, et al. Differentiation of fibroadenomas versus malignant breast tumors utilizing three-dimensional amide proton transfer weighted magnetic resonance imaging[J/OL]. Clin Imaging, 2022, 81: 15-23 [2023-09-08]. https://pubmed.ncbi.nlm.nih.gov/34597999/. DOI: 10.1016/j.clinimag.2021.09.002.
[24]
MENG N, WANG X J, SUN J, et al. A comparative study of the value of amide proton transfer-weighted imaging and diffusion kurtosis imaging in the diagnosis and evaluation of breast cancer[J]. Eur Radiol, 2021, 31(3): 1707-1717. DOI: 10.1007/s00330-020-07169-x.
[25]
MENG N, WANG X J, SUN J, et al. Comparative study of amide proton transfer-weighted imaging and intravoxel incoherent motion imaging in breast cancer diagnosis and evaluation[J]. J Magn Reson Imaging, 2020, 52(4): 1175-1186. DOI: 10.1002/jmri.27190.
[26]
ZHOU S H, WANG X J, CHENG S J, et al. Study on the correlation between multi-parameter MRI and pathology in the tumor body and peritumoral area of breast cancer[J]. Chin J Magn Reson Imag, 2023, 14(3): 72-80. DOI: 10.12015/issn.1674-8034.2023.03.013.
[27]
WEN J, WANG M, XIANG L, et al. Preliminary study on the application value of 3.0 T magnetic resonance amide proton transfer (APT) imaging in breast diseases[J]. Chin J Magn Reson Imag, 2021, 12(12): 67-70. DOI: 10.12015/issn.1674-8034.2021.12.013.
[28]
FUSCO R, GRANATA V, PARIANTE P, et al. Blood oxygenation level dependent magnetic resonance imaging and diffusion weighted MRI imaging for benign and malignant breast cancer discrimination[J/OL]. Magn Reson Imaging, 2021, 75: 51-59 [2023-09-08]. https://pubmed.ncbi.nlm.nih.gov/33080334/. DOI: 10.1016/j.mri.2020.10.008.
[29]
WANG Y, LIU M, JIN M L. Blood oxygenation level-dependent magnetic resonance imaging of breast cancer: correlation with carbonic anhydrase IX and vascular endothelial growth factor[J]. Chin Med J, 2017, 130(1): 71-76. DOI: 10.4103/0366-6999.196570.
[30]
FUSCO R, GRANATA V, MATTACE RASO M, et al. Blood oxygenation level dependent magnetic resonance imaging (MRI), dynamic contrast enhanced MRI, and diffusion weighted MRI for benign and malignant breast cancer discrimination: a preliminary experience[J/OL]. Cancers, 2021, 13(10): 2421 [2023-09-08]. https://pubmed.ncbi.nlm.nih.gov/34067721/. DOI: 10.3390/cancers13102421.
[31]
ZARIC O, FARR A, MINARIKOVA L, et al. Tissue sodium concentration quantification at 7.0-T MRI as an early marker for chemotherapy response in breast cancer: a feasibility study[J]. Radiology, 2021, 299(1): 63-72. DOI: 10.1148/radiol.2021201600.
[32]
WANG Z, WU Q, NING N, et al. Study on the value of mDixon-Quant technique in the diagnosis and prognosis evaluation of invasive ductal breast cancer[J]. Chin J Magn Reson Imag, 2023, 14(3): 65-71. DOI: 10.12015/issn.1674-8034.2023.03.012.
[33]
BITENCOURT A, SEVILIMEDU V, MORRIS E A, et al. Fat composition measured by proton spectroscopy: a breast cancer tumor marker?[J/OL]. Diagnostics, 2021, 11(3): 564 [2023-09-08]. https://pubmed.ncbi.nlm.nih.gov/33801022/. DOI: 10.3390/diagnostics11030564.
[34]
CHEUNG S M, HUSAIN E, MALLIKOURTI V, et al. Intra-tumoural lipid composition and lymphovascular invasion in breast cancer via non-invasive magnetic resonance spectroscopy[J]. Eur Radiol, 2021, 31(6): 3703-3711. DOI: 10.1007/s00330-020-07502-4.
[35]
LEE S A, LEE Y, RYU H S, et al. Diffusion-weighted breast MRI in prediction of upstaging in women with biopsy-proven ductal carcinoma in situ[J/OL]. Radiology, 2022, 305(1): E60 [2023-09-08]. https://pubmed.ncbi.nlm.nih.gov/36154288/. DOI: 10.1148/radiol.229018.
[36]
WILPERT C, NEUBAUER C, RAU A, et al. Accelerated diffusion-weighted imaging in 3 T breast MRI using a deep learning reconstruction algorithm with superresolution processing: a prospective comparative study[J]. Invest Radiol, 2023, 58(12): 842-852. DOI: 10.1097/RLI.0000000000000997.
[37]
ZHU J J, GENG J H, SHAN W, et al. Development and validation of a deep learning model for breast lesion segmentation and characterization in multiparametric MRI[J/OL]. Front Oncol, 2022, 12: 946580 [2023-09-08]. https://pubmed.ncbi.nlm.nih.gov/36033449/. DOI: 10.3389/fonc.2022.946580.
[38]
DALMIŞ M U, GUBERN-MÉRIDA A, VREEMANN S, et al. Artificial intelligence-based classification of breast lesions imaged with a multiparametric breast MRI protocol with ultrafast DCE-MRI, T2, and DWI[J]. Invest Radiol, 2019, 54(6): 325-332. DOI: 10.1097/RLI.0000000000000544.
[39]
ZHOU Z J, ADRADA B E, CANDELARIA R P, et al. Predicting pathological complete response to neoadjuvant systemic therapy for triple-negative breast cancers using deep learning on multiparametric MRIs[J/OL]. Annu Int Conf IEEE Eng Med Biol Soc, 2023, 2023: 1-4 [2023-09-08]. https://pubmed.ncbi.nlm.nih.gov/38083160/. DOI: 10.1109/EMBC40787.2023.10340987.
[40]
ALMUTLAQ Z M, WILSON D J, BACON S E, et al. Evaluation of monoexponential, stretched-exponential and intravoxel incoherent motion MRI diffusion models in early response monitoring to neoadjuvant chemotherapy in patients with breast cancer-a preliminary study[J]. J Magn Reson Imaging, 2022, 56(4): 1079-1088. DOI: 10.1002/jmri.28113.
[41]
WANG W W, ZHANG X D, ZHU L M, et al. Prediction of prognostic factors and genotypes in patients with breast cancer using multiple mathematical models of MR diffusion imaging[J/OL]. Front Oncol, 2022, 12: 825264 [2023-09-08]. https://pubmed.ncbi.nlm.nih.gov/35174093/. DOI: 10.3389/fonc.2022.825264.
[42]
USLU H, ÖNAL T, TOSUN M, et al. Intravoxel incoherent motion magnetic resonance imaging for breast cancer: a comparison with molecular subtypes and histological grades[J/OL]. Magn Reson Imag, 2021, 78: 35-41 [2023-09-08]. https://pubmed.ncbi.nlm.nih.gov/33556485/. DOI: 10.1016/j.mri.2021.02.005.
[43]
ZHAO M, WU Q, GUO L L, et al. Magnetic resonance imaging features for predicting axillary lymph node metastasis in patients with breast cancer[J/OL]. Eur J Radiol, 2020, 129: 109093 [2023-09-08]. https://pubmed.ncbi.nlm.nih.gov/32512504/. DOI: 10.1016/j.ejrad.2020.109093.
[44]
DOUDOU N R, LIU Y J, KAMPO S, et al. Optimization of intravoxel incoherent motion (IVIM): variability of parameters measurements using a reduced distribution of b values for breast tumors analysis[J]. MAGMA, 2020, 33(2): 273-281. DOI: 10.1007/s10334-019-00779-7.
[45]
HONDA M, IIMA M, KATAOKA M, et al. Biomarkers predictive of distant disease-free survival derived from diffusion-weighted imaging of breast cancer[J]. Magn Reson Med Sci, 2023, 22(4): 469-476. DOI: 10.2463/mrms.mp.2022-0060.
[46]
ZHOU Z, CHEN Y Q, ZHAO F, et al. Predictive value of intravoxel incoherent motion combined with diffusion kurtosis imaging for breast cancer axillary lymph node metastasis: a retrospective study[J]. Acta Radiol, 2023, 64(3): 951-961. DOI: 10.1177/02841851221107626.
[47]
WU Q, WANG Z, NING N, et al. Differential diagnostic value of IVIM combining with dynamic enhanced MRI in non-mass enhancement adenosis and breast cancer[J]. Chin J Magn Reson Imag, 2023, 14(2): 37-43, 49. DOI: 10.12015/issn.1674-8034.2023.02.007.
[48]
WANG H J, WANG W W, LÜ S Q, et al. Value of multi-parameter diffusion weighted imaging in the differential diagnosis of benign and malignant TIC type Ⅱ breast lesions[J]. Chin J Magn Reson Imag, 2022, 13(9): 18-24. DOI: 10.12015/issn.1674-8034.2022.09.004.
[49]
ZHANG Q, CHEN X, GU X W, et al. The value of 3.0 T MR IVIM and DKI in evaluating benign and malignant breast lesions[J]. Chin J Magn Reson Imag, 2020, 11(12): 1115-1118, 1128. DOI: 10.12015/issn.1674-8034.2020.12.007.
[50]
EGNELL L, JEROME N P, ANDREASSEN M M S, et al. Effects of echo time on IVIM quantifications of locally advanced breast cancer in clinical diffusion-weighted MRI at 3 T[J/OL]. NMR Biomed, 2022, 35(5): e4654 [2023-09-08]. https://pubmed.ncbi.nlm.nih.gov/34967468/. DOI: 10.1002/nbm.4654.
[51]
BAXTER G C, PATTERSON A J, WOITEK R, et al. Improving the image quality of DWI in breast cancer: comparison of multi-shot DWI using multiplexed sensitivity encoding to conventional single-shot echo-planar imaging DWI[J/OL]. Br J Radiol, 2021, 94(1119): 20200427 [2023-09-08]. https://pubmed.ncbi.nlm.nih.gov/32903028/. DOI: 10.1259/bjr.20200427.
[52]
HU Y X, IKEDA D M, PITTMAN S M, et al. Multishot diffusion-weighted MRI of the breast with multiplexed sensitivity encoding (MUSE) and shot locally low-rank (shot-LLR) reconstructions[J]. J Magn Reson Imaging, 2021, 53(3): 807-817. DOI: 10.1002/jmri.27383.
[53]
DAIMIEL NARANJO I, GULLO R L, MORRIS E A, et al. High-spatial-resolution multishot multiplexed sensitivity-encoding diffusion-weighted imaging for improved quality of breast images and differentiation of breast lesions: a feasibility study[J/OL]. Radiol Imaging Cancer, 2020, 2(3): e190076 [2023-09-08]. https://pubmed.ncbi.nlm.nih.gov/33778712/. DOI: 10.1148/rycan.2020190076.
[54]
TSOUGOS I, BAKOSIS M, TSIVAKA D, et al. Diagnostic performance of quantitative diffusion tensor imaging for the differentiation of breast lesions at 3 T MRI[J/OL]. Clin Imaging, 2019, 53: 25-31 [2023-09-08]. https://pubmed.ncbi.nlm.nih.gov/30308430/. DOI: 10.1016/j.clinimag.2018.10.002.
[55]
LUO J, HIPPE D S, RAHBAR H, et al. Diffusion tensor imaging for characterizing tumor microstructure and improving diagnostic performance on breast MRI: a prospective observational study[J/OL]. Breast Cancer Res, 2019, 21(1): 102 [2023-09-08]. https://pubmed.ncbi.nlm.nih.gov/31484577/. DOI: 10.1186/s13058-019-1183-3.
[56]
ABDEL RAZEK A A K, ZAKY M, BAYOUMI D, et al. Diffusion tensor imaging parameters in differentiation recurrent breast cancer from post-operative changes in patients with breast-conserving surgery[J/OL]. Eur J Radiol, 2019, 111: 76-80 [2023-09-08]. https://pubmed.ncbi.nlm.nih.gov/30691669/. DOI: 10.1016/j.ejrad.2018.12.022.
[57]
NISSAN N, ALLWEIS T, MENES T, et al. Breast MRI during lactation: effects on tumor conspicuity using dynamic contrast-enhanced (DCE) in comparison with diffusion tensor imaging (DTI) parametric maps[J]. Eur Radiol, 2020, 30(2): 767-777. DOI: 10.1007/s00330-019-06435-x.
[58]
MAO C P, JIANG W, HUANG J Y, et al. Quantitative parameters of diffusion spectrum imaging: HER2 status prediction in patients with breast cancer[J/OL]. Front Oncol, 2022, 12: 817070 [2023-09-08]. https://pubmed.ncbi.nlm.nih.gov/35186753/. DOI: 10.3389/fonc.2022.817070.
[59]
MATSUDA M, TSUDA T, EBIHARA R, et al. Enhanced masses on contrast-enhanced breast: differentiation using a combination of dynamic contrast-enhanced MRI and quantitative evaluation with synthetic MRI[J]. J Magn Reson Imaging, 2021, 53(2): 381-391. DOI: 10.1002/jmri.27362.
[60]
GAO W B, ZHANG S Q, GUO J X, et al. Investigation of synthetic relaxometry and diffusion measures in the differentiation of benign and malignant breast lesions as compared to BI-RADS[J]. J Magn Reson Imaging, 2021, 53(4): 1118-1127. DOI: 10.1002/jmri.27435.
[61]
LI Q, XIAO Q, YANG M, et al. Histogram analysis of quantitative parameters from synthetic MRI: correlations with prognostic factors and molecular subtypes in invasive ductal breast cancer[J/OL]. Eur J Radiol, 2021, 139: 109697 [2023-09-08]. https://pubmed.ncbi.nlm.nih.gov/33857828/. DOI: 10.1016/j.ejrad.2021.109697.
[62]
MATSUDA M, TSUDA T, EBIHARA R, et al. Triple-negative breast cancer on contrast-enhanced MRI and synthetic MRI: a comparison with non-triple-negative breast carcinoma[J/OL]. Eur J Radiol, 2021, 142: 109838 [2023-09-08]. https://pubmed.ncbi.nlm.nih.gov/34217136/. DOI: 10.1016/j.ejrad.2021.109838.
[63]
MATSUDA M, KIDO T, TSUDA T, et al. Utility of synthetic MRI in predicting the Ki-67 status of oestrogen receptor-positive breast cancer: a feasibility study[J/OL]. Clin Radiol, 2020, 75(5): 398.e1-398398.e8 [2023-09-08]. https://pubmed.ncbi.nlm.nih.gov/32019671/. DOI: 10.1016/j.crad.2019.12.021.
[64]
SUN S Y, DING Y Y, LI Z L, et al. Multiparameter MRI model with DCE-MRI, DWI, and synthetic MRI improves the diagnostic performance of BI-RADS 4 lesions[J/OL]. Front Oncol, 2021, 11: 699127 [2023-09-08]. https://pubmed.ncbi.nlm.nih.gov/34722246/. DOI: 10.3389/fonc.2021.699127.
[65]
LI J, WU L H, XU M Y, et al. Improving image quality and reducing scan time for synthetic MRI of breast by using deep learning reconstruction[J/OL]. Biomed Res Int, 2022, 2022: 3125426 [2023-09-08]. https://pubmed.ncbi.nlm.nih.gov/36060133/. DOI: 10.1155/2022/3125426.

PREV Progress in multimodal MRI study of diabetic peripheral neuropathy
NEXT Research progress of radiomics in predicting the efficacy of neoadjuvant chemoradiotherapy for locally advanced rectal cancer
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn