Share:
Share this content in WeChat
X
Review
Research progress of radiomics in predicting the efficacy of neoadjuvant chemoradiotherapy for locally advanced rectal cancer
LIANG Cheng  AN Xiaoxia  LI Rui  CAO Liang  GUO Shunlin 

Cite this article as: LIANG C, AN X X, LI R, et al. Research progress of radiomics in predicting the efficacy of neoadjuvant chemoradiotherapy for locally advanced rectal cancer[J]. Chin J Magn Reson Imaging, 2024, 15(1): 224-228. DOI:10.12015/issn.1674-8034.2024.01.038.


[Abstract] Preoperative neoadjuvant chemoradiotherapy (nCRT) has become a standard treatment for patients with locally advanced rectal cancer (LARC). The evaluation of nCRT efficacy has traditionally relied on visual assessment of MRI images, colonoscopy, and postoperative pathology. However, these methods have their own limitations. The evaluation of the efficacy of nCRT is not enough to guide the clinical personalized treatment of patients with LARC. Recent in depth investigations into radiomics have revealed promising potential for predicting the effectiveness of nCRT. Consequently, this study will review the research status of radiomics in predicting the efficacy and shortcomings of nCRT in patients with LARC, aiming to find a new method to predict the efficacy of nCRT more accurately and provide a basis for clinical follow-up treatment.
[Keywords] locally advanced rectal cancer;neoadjuvant chemoradiotherapy;radiomics;magnetic resonance imaging

LIANG Cheng1   AN Xiaoxia1   LI Rui1   CAO Liang2   GUO Shunlin2*  

1 The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China

2 Department of Radiology, the First Hospital of Lanzhou University, Lanzhou 730000, China

Corresponding author: GUO S L, E-mail: guoshl@lzu.edu.cn

Conflicts of interest   None.

Received  2023-07-03
Accepted  2023-12-08
DOI: 10.12015/issn.1674-8034.2024.01.038
Cite this article as: LIANG C, AN X X, LI R, et al. Research progress of radiomics in predicting the efficacy of neoadjuvant chemoradiotherapy for locally advanced rectal cancer[J]. Chin J Magn Reson Imaging, 2024, 15(1): 224-228. DOI:10.12015/issn.1674-8034.2024.01.038.

[1]
SIEGEL R L, WAGLE N S, CERCEK A, et al. Colorectal cancer statistics, 2023[J]. CA Cancer J Clin, 2023, 73(3): 233-254. DOI: 10.3322/caac.21772.
[2]
GLYNNE-JONES R, WYRWICZ L, TIRET E, et al. Rectal cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up[J/OL]. Ann Oncol, 2017, 28(suppl_4): iv22-iv40 [2023-12-05]. https://www.annalsofoncology.org/article/S0923-7534(19)42152-2/fulltext. DOI: 10.1093/annonc/mdx224.
[3]
SUN Y S. Accurate imaging evaluation for locally advanced rectal cancer reveived neoadjuvant chemoradiotherapy: from image to big data hidden behind it[J]. Chin J Radiol, 2021, 55(11): 1117-1120. DOI: 10.3760/cma.j.cn112149-20210914-00854.
[4]
ORONSKY B, REID T, LARSON C, et al. Locally advanced rectal cancer: the past, present, and future[J]. Semin Oncol, 2020, 47(1): 85-92. DOI: 10.1053/j.seminoncol.2020.02.001.
[5]
CONROY T, BOSSET J F, ETIENNE P L, et al. Neoadjuvant chemotherapy with FOLFIRINOX and preoperative chemoradiotherapy for patients with locally advanced rectal cancer (UNICANCER-PRODIGE 23): a multicentre, randomised, open-label, phase 3 trial[J]. Lancet Oncol, 2021, 22(5): 702-715. DOI: 10.1016/S1470-2045(21)00079-6.
[6]
ZHAO F, WANG J L, YU H, et al. Neoadjuvant radiotherapy improves overall survival for T3/4N+M0 rectal cancer patients: a population-based study of 20300 patients[J/OL]. Radiat Oncol, 2020, 15(1): 49 [2023-12-05]. https://ro-journal.biomedcentral.com/articles/10.1186/s13014-020-01-497-4. DOI: 10.1186/s13014-020-01497-4.
[7]
SUWANTHANMA W, KITUDOMRAT S, EUANORASETR C. Clinical outcome of neoadjuvant chemoradiation in rectal cancer treatment[J/OL]. Medicine, 2021, 100(38): e27366 [2023.12.05]. https://journals.lww.com/md-journal/fulltext/2021/09240/clinical_outcome_-of_neoadjuvant_chemoradiation_in.70.aspx. DOI: 10.1097/MD.0000000000027366.
[8]
KOUKOURAKIS I M, KOULOULIAS V, TINIAKOS D, et al. Current status of locally advanced rectal cancer therapy and future prospects[J/OL]. Crit Rev Oncol Hematol, 2023, 186: 103992 [2023-12-05]. https://www.sciencedirect.com/science/article/abs/pii/S10408428-2300080X?via%3Dihub. DOI: 10.1016/j.critrevonc.2023.103992.
[9]
FERNANDES M C, GOLLUB M J, BROWN G. The importance of MRI for rectal cancer evaluation[J/OL]. Surg Oncol, 2022, 43: 101739 [2023-12-05]. https://www.sciencedirect.com/scie-nce/article/abs/pii/S0960740422000329?via%3Dihub. DOI: 10.1016/j.suronc.2022.101739.
[10]
Image Big Data Artificial Intelligence Working Committee of Chinese Society of Radiology Chinese Medical Association, Medical Imaging and Artificial Intelligence Branch of Chinese Research Hospital Association, Clinical Precision Medicine Society of Chinese Medical Doctor Association, et al. Methodological expert consensus on radiomics using quantitative analysis of multimodal MRI for response and prognosis evaluation of neoadjuvant therapy for rectal cancer[J]. Chin J Radiol, 2022, 56(6): 608-615. DOI: 10.3760/cma.j.cn112149-20211220-01122.
[11]
BENSON A B, VENOOK A P, AL-HAWARY M M, et al. Rectal cancer, version 2.2022, NCCN clinical practice guidelines in oncology[J]. J Natl Compr Canc Netw, 2022, 20(10): 1139-1167. DOI: 10.6004/jnccn.2022.0051.
[12]
BODY A, PRENEN H, LAM M, et al. Neoadjuvant therapy for locally advanced rectal cancer: recent advances and ongoing challenges[J]. Clin Colorectal Cancer, 2021, 20(1): 29-41. DOI: 10.1016/j.clcc.2020.12.005.
[13]
NAHAS S C, RIZKALLAH NAHAS C S, SPARAPAN MARQUES C F, et al. Pathologic complete response in rectal cancer: can we detect it? lessons learned from a proposed randomized trial of watch-and-wait treatment of rectal cancer[J]. Dis Colon Rectum, 2016, 59(4): 255-263. DOI: 10.1097/DCR.0000000000000558.
[14]
CHOW O S, PATIL S, KESKIN M, et al. Variation in the thoroughness of pathologic assessment and response rates of locally advanced rectal cancers after chemoradiation[J]. J Gastrointest Surg, 2019, 23(4): 794-799. DOI: 10.1007/s11605-019-04119-x.
[15]
DONG L C, LI Y M, SUN C, et al. Tumor regression grade after neoadjuvant chemoradiotherapy for locally advanced rectal cancer: MRI and pathological control study[J]. Chin J Magn Reson Imag, 2022, 13(9): 91-94, 103. DOI: 10.12015/issn.1674-8034.2022.09.017.
[16]
LAMBIN P, RIOS-VELAZQUEZ E, LEIJENAAR R, et al. Radiomics: extracting more information from medical images using advanced feature analysis[J]. Eur J Cancer, 2012, 48(4): 441-446. DOI: 10.1016/j.ejca.2011.11.036.
[17]
ZHANG K K, XU Y S, GAO Y, et al. Advances in application of radiomics in colorectal cancer[J]. Chin J Magn Reson Imag, 2021, 12(3): 112-115. DOI: 10.12015/issn.1674-8034.2021.03.028.
[18]
SCAPICCHIO C, GABELLONI M, BARUCCI A, et al. A deep look into radiomics[J]. Radiol Med, 2021, 126(10): 1296-1311. DOI: 10.1007/s11547-021-01389-x.
[19]
SHIN J, SEO N, BAEK S E, et al. MRI radiomics model predicts pathologic complete response of rectal cancer following chemoradiotherapy[J]. Radiology, 2022, 303(2): 351-358. DOI: 10.1148/radiol.211986.
[20]
ANTUNES J T, OFSHTEYN A, BERA K, et al. Radiomic features of primary rectal cancers on baseline T2-weighted MRI are associated with pathologic complete response to neoadjuvant chemoradiation: a multisite study[J]. J Magn Reson Imaging, 2020, 52(5): 1531-1541. DOI: 10.1002/jmri.27140.
[21]
FERRARI R, MANCINI-TERRACCIANO C, VOENA C, et al. MR-based artificial intelligence model to assess response to therapy in locally advanced rectal cancer[J/OL]. Eur J Radiol, 2019, 118: 1-9 [2023-12-05]. https://www.ejradiology.com/article/S0720-048X(19)30217-7/fulltext. DOI: 10.1016/j.ejrad.2019.06.013.
[22]
CUI Y F, YANG X T, SHI Z Q, et al. Radiomics analysis of multiparametric MRI for prediction of pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer[J]. Eur Radiol, 2019, 29(3): 1211-1220. DOI: 10.1007/s00330-018-5683-9.
[23]
QIN S Y, LU S Y, WANG Q Z, et al. MRI radiomics models in rectal cancer to predict pathological complete response of nCRT: evaluation of different approaches[J]. Chin J Magn Reson Imag, 2022, 13(11): 82-87, 114. DOI: 10.12015/issn.1674-8034.2022.11.015.
[24]
JAYAPRAKASAM V S, PARODER V, GIBBS P, et al. MRI radiomics features of mesorectal fat can predict response to neoadjuvant chemoradiation therapy and tumor recurrence in patients with locally advanced rectal cancer[J]. Eur Radiol, 2022, 32(2): 971-980. DOI: 10.1007/s00330-021-08144-w.
[25]
LIU Z Y, ZHANG X Y, SHI Y J, et al. Radiomics analysis for evaluation of pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer[J]. Clin Cancer Res, 2017, 23(23): 7253-7262. DOI: 10.1158/1078-0432.CCR-17-1038.
[26]
ZHOU Y R, ZHANG L, HAN D S, et al. Construction of prediction model of locally advanced rectal cancer after neoadjuvant chemoradiotherapy based on MRI radiomics[J]. Chin J Med Imag, 2022, 30(9): 881-888. DOI: 10.3969/j.issn.1005-5185.2022.09.003.
[27]
LI Z Y, WANG X D, LI M, et al. Multi-modal radiomics model to predict treatment response to neoadjuvant chemotherapy for locally advanced rectal cancer[J]. World J Gastroenterol, 2020, 26(19): 2388-2402. DOI: 10.3748/wjg.v26.i19.2388.
[28]
FENG L L, LIU Z Y, LI C F, et al. Development and validation of a radiopathomics model to predict pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer: a multicentre observational study[J/OL]. Lancet Digit Health, 2022, 4(1): e8-e17 [2023-12-05]. https://www.thelancet.com/journals/landig/article/PIIS2589-7500(21)00215-6/fulltext. DOI: 10.1016/S2589-7500(21)00215-6.
[29]
KUANG J, SHI G F, LI R X, et al. Application of ADC imaging-based different radiomics models in predicting the efficacy of neoadjuvant chemoradiotherapy for locally advanced rectal cancer[J]. Oncoradiology, 2020, 29(5): 467-475. DOI: 10.19732/j.cnki.2096-6210.2020.05.008.
[30]
SHAYESTEH S P, ALIKHASSI A, FARD ESFAHANI A, et al. Neo-adjuvant chemoradiotherapy response prediction using MRI based ensemble learning method in rectal cancer patients[J]. Phys Med, 2019, 62: 111-119. DOI: 10.1016/j.ejmp.2019.03.013.
[31]
LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. DOI: 10.1038/nature14539.
[32]
CHARTRAND G, CHENG P M, VORONTSOV E, et al. Deep learning: a primer for radiologists[J]. Radiographics, 2017, 37(7): 2113-2131. DOI: 10.1148/rg.2017170077.
[33]
MAZUROWSKI M A, BUDA M, SAHA A, et al. Deep learning in radiology: an overview of the concepts and a survey of the state of the art with focus on MRI[J]. J Magn Reson Imaging, 2019, 49(4): 939-954. DOI: 10.1002/jmri.26534.
[34]
MCBEE M P, AWAN O A, COLUCCI A T, et al. Deep learning in radiology[J]. Acad Radiol, 2018, 25(11): 1472-1480. DOI: 10.1016/j.acra.2018.02.018.
[35]
BIBAULT J E, GIRAUD P, HOUSSET M, et al. Deep Learning and Radiomics predict complete response after neo-adjuvant chemoradiation for locally advanced rectal cancer[J/OL]. Sci Rep, 2018, 8(1): 12611 [2023-12-05]. https://www.nature.com/articles/s41598-018-30657-6. DOI: 10.1038/s41598-018-30657-6.
[36]
JIN C, YU H, KE J, et al. Predicting treatment response from longitudinal images using multi-task deep learning[J]. Nat Commun, 2021, 12(1): 1851 [2023-12-05]. https://www.nature.com/ar-ticles/s41467-021-22188-y. DOI: 10.1038/s41467-021-22188-y.
[37]
WAN L J, HU J S, CHEN S, et al. Prediction of lymph node metastasis in stage T1-2 rectal cancers with MRI-based deep learning[J]. Eur Radiol, 2023, 33(5): 3638-3646. DOI: 10.1007/s00330-023-09450-1.
[38]
POON S T S, HANNA F W F, LEMARCHAND F, et al. Detecting adrenal lesions on 3D CT scans using a 2.5D deep learning model[J/OL]. MedRxiv, 2023 [2023-12-05]. https://www.medrxiv.org/content/10.1101/2023.02.22.23286184. DOI: 10.1101/2023.02.22.23286184.
[39]
HE F X, LIU T L, TAO D C. Why ResNet works? residuals generalize[J]. IEEE Trans Neural Netw Learn Syst, 2020, 31(12): 5349-5362. DOI: 10.1109/TNNLS.2020.2966319.
[40]
XU W N, FU Y L, ZHU D M. ResNet and its application to medical image processing: research progress and challenges[J/OL]. Comput Methods Programs Biomed, 2023, 240: 107660 [2023-12-05]. https://www.sciencedirect.com/science/article/pii/S0169260723003255?via%3Dihub. DOI: 10.1016/j.cmpb.2023.107660.
[41]
GALEANO NIÑO J L, WU H R, LACOURSE K D, et al. Effect of the intratumoral microbiota on spatial and cellular heterogeneity in cancer[J]. Nature, 2022, 611(7937): 810-817. DOI: 10.1038/s41586-022-05435-0.
[42]
WALSH L A, QUAIL D F. Decoding the tumor microenvironment with spatial technologies[J]. Nat Immunol, 2023, 24(12): 1982-1993. DOI: 10.1038/s41590-023-01678-9.
[43]
SHI Z W, HUANG X M, CHENG Z L, et al. MRI-based quantification of intratumoral heterogeneity for predicting treatment response to neoadjuvant chemotherapy in breast cancer[J/OL]. Radiology, 2023, 308(1): e222830 [2023-12-05]. https://pubs.rsna.org/doi/10.1148/ra-diol.222830. DOI: 10.1148/radiol.222830.
[44]
JUAN-ALBARRACÍN J, FUSTER-GARCIA E, PÉREZ-GIRBÉS A, et al. Glioblastoma: vascular habitats detected at preoperative dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging predict survival[J]. Radiology, 2018, 287(3): 944-954. DOI: 10.1148/radiol.2017170845.
[45]
WU H, TONG H P, DU X S, et al. Vascular habitat analysis based on dynamic susceptibility contrast perfusion MRI predicts IDH mutation status and prognosis in high-grade gliomas[J]. Eur Radiol, 2020, 30(6): 3254-3265. DOI: 10.1007/s00330-020-06702-2.
[46]
PARK J E, KIM H S, KIM N, et al. Spatiotemporal heterogeneity in multiparametric physiologic MRI is associated with patient outcomes in IDH-wildtype glioblastoma[J]. Clin Cancer Res, 2021, 27(1): 237-245. DOI: 10.1158/1078-0432.CCR-20-2156.
[47]
RIZZO S, BOTTA F, RAIMONDI S, et al. Radiomics: the facts and the challenges of image analysis[J/OL]. Eur Radiol Exp, 2018, 2(1): 36 [2023-12-05]. https://eurradiolexp.springerope-n.com/articles/10.1186/s41747-018-0068-z. DOI: 10.1186/s41747-018-0068-z.
[48]
RIZZO S M, KALRA M K, SCHMIDT B, et al. CT images of abdomen and pelvis: effect of nonlinear three-dimensional optimized reconstruction algorithm on image quality and lesion characteristics[J]. Radiology, 2005, 237(1): 309-315. DOI: 10.1148/radiol.2371041879.
[49]
HOU M, SUN J H. Emerging applications of radiomics in rectal cancer: state of the art and future perspectives[J]. World J Gastroenterol, 2021, 27(25): 3802-3814. DOI: 10.3748/wjg.v27.i25.3802.
[50]
ZHANG S Y, YU M R, CHEN D, et al. Role of MRI-based radiomics in locally advanced rectal cancer (Review)[J/OL]. Oncol Rep, 2022, 47(2): 34 [2023-12-05]. https://www.spandidos-publications.com/10.3892/or.2021.8245. DOI: 10.3892/or.2021.8245.

PREV Progress in the application of different functional magnetic resonance imaging techniques in breast cancer
NEXT Progress of multimodal MRI in end-stage renal disease complicated with cognitive impairment
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn