Share:
Share this content in WeChat
X
Review
Progress of multimodal MRI in end-stage renal disease complicated with cognitive impairment
LU Ting  LU Ji 

Cite this article as: LU T, LU J. Progress of multimodal MRI in end-stage renal disease complicated with cognitive impairment[J]. Chin J Magn Reson Imaging, 2024, 15(1): 229-234. DOI:10.12015/issn.1674-8034.2024.01.039.


[Abstract] Cognitive impairment is highly prevalent in patients with end-stage renal disease, and this impairment, which involves a range of cognitive domains including attention, memory, and executive functioning, severely diminishes patients' quality of life. However, the exact mechanisms underlying this neurocognitive deficit are unknown, making it challenging to detect and manage this cognitive impairment at an early stage. Multimodal magnetic resonance imaging has yielded many results in this area in recent years and holds the promise of selecting imaging biomarkers to guide early screening and diagnosis of cognitive deficits in patients with chronic kidney disease (CKD). This paper will briefly describe the research progress of various emerging MRI technologies and artificial intelligence in end-stage renal disease (ESRD) patients with cognitive impairment, and try to reveal the connection between brain structure, function, perfusion, metabolism, neurovascular coupling and cognitive dysfunction in ESRD patients, so as to help clinical understanding of the potential neuronal mechanism of brain defects in ESRD patients. It is beneficial to the early diagnosis, treatment and follow-up of ESRD patients with cognitive impairment.
[Keywords] end-stage renal disease;cognitive impairment;magnetic resonance imaging;multimodal;functional brain imaging;hemodialysis;brain impairment

LU Ting1, 2   LU Ji1, 2*  

1 The First College of Clinical Medical Science, China Three Gorges University, Yichang 443000, China

2 Department of Radiology, Yichang Central People's Hospital, Yichang 443000, China

Corresponding author: LU J, E-mail: 15926951408@163.com

Conflicts of interest   None.

Received  2023-11-14
Accepted  2024-01-09
DOI: 10.12015/issn.1674-8034.2024.01.039
Cite this article as: LU T, LU J. Progress of multimodal MRI in end-stage renal disease complicated with cognitive impairment[J]. Chin J Magn Reson Imaging, 2024, 15(1): 229-234. DOI:10.12015/issn.1674-8034.2024.01.039.

[1]
KALANTAR-ZADEH K, JAFAR T H, NITSCH D, et al. Chronic kidney disease[J]. Lancet, 2021, 398(10302): 786-802. DOI: 10.1016/S0140-6736(21)00519-5.
[2]
SINGH-MANOUX A, OUMAROU-IBRAHIM A, MACHADO-FRAGUA M D, et al. Association between kidney function and incidence of dementia: 10-year follow-up of the Whitehall Ⅱ cohort study[J/OL]. Age Ageing, 2022, 51(1): afab259 [2023-11-05]. https://pubmed.ncbi.nlm.nih.gov/35061870/. DOI: 10.1093/ageing/afab259.
[3]
NI L, WEN J Q, ZHANG L J, et al. Aberrant default-mode functional connectivity in patients with end-stage renal disease: a resting-state functional MR imaging study[J]. Radiology, 2014, 271(2): 543-552. DOI: 10.1148/radiol.13130816.
[4]
DREW D A, WEINER D E, SARNAK M J. Cognitive impairment in CKD: pathophysiology, management, and prevention[J]. Am J Kidney Dis, 2019, 74(6): 782-790. DOI: 10.1053/j.ajkd.2019.05.017.
[5]
FENG Y D, HUANG Q, ZHOU Y L. Cognitive function and risk factors in patients with chronic kidney disease[J]. J Cap Med Univ, 2023, 44(5): 788-794. DOI: 10.3969/j.issn.1006-7795.2023.05.013.
[6]
TAMURA M K, YAFFE K. Dementia and cognitive impairment in ESRD: diagnostic and therapeutic strategies[J]. Kidney Int, 2011, 79(1): 14-22. DOI: 10.1038/ki.2010.336.
[7]
WILLIAMS U E, OWOLABI M O, OGUNNIYI A, et al. Prevalence and pattern of neurocognitive impairment in nigerians with stages 3 to 5 chronic kidney disease[J/OL]. ISRN Neurol, 2013, 2013: 374890 [2023-09-18]. https://pubmed.ncbi.nlm.nih.gov/23864958/. DOI: 10.1155/2013/374890.
[8]
GREINERT R, GREINERT D, EGER A L, et al. Subclinical cognitive impairment in chronic kidney disease is associated with frailty and reduced quality of life[J]. Nephrol Dial Transplant, 2023, 38(5): 1151-1157. DOI: 10.1093/ndt/gfac303.
[9]
SEDAGHAT S, SOROND F, YAFFE K, et al. Decline in kidney function over the course of adulthood and cognitive function in midlife[J/OL]. Neurology, 2020, 95(17): e2389-e2397 [2023-11-09]. https://pubmed.ncbi.nlm.nih.gov/32878993/. DOI: 10.1212/WNL.0000000000010631.
[10]
JIN M, WANG L Y, WANG H, et al. Structural and functional alterations in hemodialysis patients: a voxel-based morphometry and functional connectivity study[J/OL]. Front Hum Neurosci, 2020, 14: 80 [2023-09-06]. https://pubmed.ncbi.nlm.nih.gov/32218727/. DOI: 10.3389/fnhum.2020.00080.
[11]
LIJDSMAN S, OOSTROM K J, VAN SANDWIJK M S, et al. Risk factors for neurocognitive impairment and the relation with structural brain abnormality in children and young adults with severe chronic kidney disease[J]. Pediatr Nephrol, 2023, 38(6): 1957-1969. DOI: 10.1007/s00467-022-05781-1.
[12]
LIU H S, HARTUNG E A, JAWAD A F, et al. Regional cerebral blood flow in children and young adults with chronic kidney disease[J]. Radiology, 2018, 288(3): 849-858. DOI: 10.1148/radiol.2018171339.
[13]
CAO J H, LIU G Z, LI X K, et al. Dynamic functional connectivity changes in the triple networks and its association with cognitive impairment in hemodialysis patients[J/OL]. Brain Behav, 2021, 11(8): e2314 [2023-10-20]. https://pubmed.ncbi.nlm.nih.gov/34333874/. DOI: 10.1002/brb3.2314.
[14]
MA X Y, ZHANG Y, MA S H, et al. Association between abnormal thalamic metabolites and sleep disturbance in patients with end-stage renal disease[J]. Metab Brain Dis, 2018, 33(5): 1641-1648. DOI: 10.1007/s11011-018-0272-9.
[15]
LI P, MU J Y, MA X Y, et al. Neurovascular coupling dysfunction in end-stage renal disease patients related to cognitive impairment[J]. J Cereb Blood Flow Metab, 2021, 41(10): 2593-2606. DOI: 10.1177/0271678X211007960.
[16]
ZHENG L J, LIN L, ZHONG J H, et al. Gut dysbiosis-influence on amygdala-based functional activity in patients with end stage renal disease: a preliminary study[J]. Brain Imaging Behav, 2020, 14(6): 2731-2744. DOI: 10.1007/s11682-019-00223-3.
[17]
TSURUYA K, YOSHIDA H, KUROKI Y, et al. Brain atrophy in peritoneal dialysis and CKD stages 3-5: A cross-sectional and longitudinal study[J]. Am J Kidney Dis, 2015, 65(2): 312-321. DOI: 10.1053/j.ajkd.2014.07.011.
[18]
CEDEÑO S, DESCO M, ALEMAN Y, et al. Intradialytic hypotension and relationship with cognitive function and brain morphometry[J]. Clin Kidney J, 2021, 14(4): 1156-1164. DOI: 10.1093/ckj/sfaa070.
[19]
XU S Q, WANG J Q, SUN K D, et al. Cognitive impairment in chronic kidney disease is associated with glymphatic system dysfunction[J]. Kidney Dis, 2023, 9(5): 384-397. DOI: 10.1159/000530635.
[20]
SCHEPPACH J B, WU A Z, GOTTESMAN R F, et al. Association of kidney function measures with signs of neurodegeneration and small vessel disease on brain magnetic resonance imaging: the atherosclerosis risk in communities (ARIC) study[J]. Am J Kidney Dis, 2023, 81(3): 261-269. DOI: 10.1053/j.ajkd.2022.07.013.
[21]
JIANG Y H, LIU Y, GAO B B, et al. Segmental abnormalities of white matter microstructure in end-stage renal disease patients: an automated fiber quantification tractography study[J/OL]. Front Neurosci, 2021, 15: 765677 [2023-11-19]. https://pubmed.ncbi.nlm.nih.gov/34938154/. DOI: 10.3389/fnins.2021.765677.
[22]
ZHANG C Y, YU H, CAI Y, et al. Diffusion tensor imaging of the brain white matter microstructure in patients with chronic kidney disease and its correlation with cognition[J/OL]. Front Neurol, 2022, 13: 1086772 [2023-11-23]. https://pubmed.ncbi.nlm.nih.gov/36588888/. DOI: 10.3389/fneur.2022.1086772.
[23]
VEMURI P, DAVEY C, JOHANSEN K L, et al. Chronic kidney disease associated with worsening white matter disease and ventricular enlargement[J]. J Alzheimers Dis, 2021, 83(4): 1729-1740. DOI: 10.3233/JAD-210604.
[24]
MA C, JIANG X H, REN Y D, et al. Fiber connectivity density mapping in end-stage renal disease patients: a preliminary study[J]. Brain Imaging Behav, 2022, 16(3): 1314-1323. DOI: 10.1007/s11682-021-00604-7.
[25]
VAN DER PLAS E, SOLOMON M A, HOPKINS L, et al. Global and regional white matter fractional anisotropy in children with chronic kidney disease[J]. J Pediatr, 2022, 242: 166-173. DOI: 10.1016/j.jpeds.2021.11.006.
[26]
ZHENG J H, JIAO Z Q, DAI J K, et al. Abnormal cerebral micro-structures in end-stage renal disease patients related to mild cognitive impairment[J/OL]. Eur J Radiol, 2022, 157: 110597 [2023-08-25]. https://pubmed.ncbi.nlm.nih.gov/36379097/. DOI: 10.1016/j.ejrad.2022.110597.
[27]
YANG Q L, HAN Y, LIU T Q, et al. A voxel-based diffusion kurtosis imaging study of whole-brain in patients with end stage renal disease[J]. Chin Comput Med Imag, 2021, 27(3): 209-213. DOI: 10.19627/j.cnki.cn31-1700/th.2021.03.006.
[28]
WELTON T, HARTONO S, SHIH Y C, et al. Microstructure of brain nuclei in early Parkinson's disease: longitudinal diffusion kurtosis imaging[J]. J Parkinsons Dis, 2023, 13(2): 233-242. DOI: 10.3233/JPD-225095.
[29]
RAJ S, VYAS S, MODI M, et al. Comparative evaluation of diffusion kurtosis imaging and diffusion tensor imaging in detecting cerebral microstructural changes in alzheimer disease[J/OL]. Acad Radiol, 2022, 29(Suppl 3): S63-S70 [2023-12-26]. https://pubmed.ncbi.nlm.nih.gov/33612351/. DOI: 10.1016/j.acra.2021.01.018.
[30]
LI C, LAN C, ZHANG X, et al. Evaluation of diffusional kurtosis imaging in sub-acute ischemic stroke: comparison with rehabilitation treatment effect[J]. Cell Transplant, 2019, 28(8): 1053-1061. DOI: 10.1177/0963689719837919.
[31]
THEODORAKOPOULOU M P, DIPLA K, ZAFEIRIDIS A, et al. Cerebral oxygenation during exercise deteriorates with advancing chronic kidney disease[J]. Nephrol Dial Transplant, 2023, 38(10): 2379-2388. DOI: 10.1093/ndt/gfad076.
[32]
CHENG B C, CHEN P C, CHEN P C, et al. Decreased cerebral blood flow and improved cognitive function in patients with end-stage renal disease after peritoneal dialysis: an arterial spin-labelling study[J]. Eur Radiol, 2019, 29(3): 1415-1424. DOI: 10.1007/s00330-018-5675-9.
[33]
LIN W Z, LIU M C, WU X X, et al. Altered cerebral blood flow in the progression of chronic kidney disease[J/OL]. J Pers Med, 2023, 13(1): 142 [2023-06-16]. https://pubmed.ncbi.nlm.nih.gov/36675803/. DOI: 10.3390/jpm13010142.
[34]
LI X F, SLININ Y X, ZHANG L, et al. Cerebral blood flow characteristics following hemodialysis initiation in older adults: a prospective longitudinal pilot study using arterial spin labeling imaging[J/OL]. Neuroimage Clin, 2020, 28: 102434 [2023-03-24]. https://pubmed.ncbi.nlm.nih.gov/32980601/. DOI: 10.1016/j.nicl.2020.102434.
[35]
WANG X Y, CHEN X H, TANG Y T, et al. The impact of hemodiafiltration on cognitive function in patients with end-stage renal disease[J/OL]. Front Neurosci, 2022, 16: 980658 [2023-09-10]. https://pubmed.ncbi.nlm.nih.gov/36741052/. DOI: 10.3389/fnins.2022.980658.
[36]
WANG H, SONG L J, LI M G, et al. Association between susceptibility value and cerebral blood flow in the bilateral putamen in patients undergoing hemodialysis[J]. J Cereb Blood Flow Metab, 2023, 43(3): 433-445. DOI: 10.1177/0271678X221134384.
[37]
WANG H, LIU X, SONG L J, et al. Dysfunctional coupling of cerebral blood flow and susceptibility value in the bilateral hippocampus is associated with cognitive decline in nondialysis patients with CKD[J]. J Am Soc Nephrol, 2023, 34(9): 1574-1588. DOI: 10.1681/ASN.0000000000000185.
[38]
SU H H, FU S S, LIU M C, et al. Altered spontaneous brain activity and functional integration in hemodialysis patients with end-stage renal disease[J/OL]. Front Neurol, 2021, 12: 801336 [2023-08-19]. https://pubmed.ncbi.nlm.nih.gov/35222228/. DOI: 10.3389/fneur.2021.801336.
[39]
BAI D, MA C, WANG C J, et al. fMRI research on regional homogeneity and functional connectivity changes of brain regions in patients with end-stage renal disease[J]. Chin J Magn Reson Imag, 2022, 13(6): 66-70. DOI: 10.12015/issn.1674-8034.2022.06.013.
[40]
ZHENG J H, SUN Q, WU X X, et al. Brain micro-structural and functional alterations for cognitive function prediction in the end-stage renal disease patients undergoing maintenance hemodialysis[J]. Acad Radiol, 2023, 30(6): 1047-1055. DOI: 10.1016/j.acra.2022.06.019.
[41]
FANG J, MIAO Y Y, ZOU F, et al. Altered resting-state cerebellar-cerebral functional connectivity in patients with end-stage renal disease[J/OL]. Ren Fail, 2023, 45(1): 2238829 [2023-10-25]. https://pubmed.ncbi.nlm.nih.gov/37488933/. DOI: 10.1080/0886022X.2023.2238829.
[42]
CHEN P N, HU R Y, GAO L, et al. Abnormal degree centrality in end-stage renal disease (ESRD) patients with cognitive impairment: a resting-state functional MRI study[J]. Brain Imaging Behav, 2021, 15(3): 1170-1180. DOI: 10.1007/s11682-020-00317-3.
[43]
CHEN H J, WANG Y F, WEN J Q, et al. Functional-structural relationship in large-scale brain networks of patients with end stage renal disease after kidney transplantation: a longitudinal study[J]. Hum Brain Mapp, 2020, 41(2): 328-341. DOI: 10.1002/hbm.24804.
[44]
SONG L J, LIU X, YANG W B, et al. Altered resting-state functional networks in nondialysis patients with stage 5 chronic kidney disease: a graph-theoretical analysis[J/OL]. Brain Sci, 2023, 13(4): 628 [2023-07-21]. https://pubmed.ncbi.nlm.nih.gov/37190593/. DOI: 10.3390/brainsci13040628.
[45]
WANG Y F, ZHENG L J, LIU Y, et al. The gut microbiota-inflammation-brain axis in end-stage renal disease: perspectives from default mode network[J]. Theranostics, 2019, 9(26): 8171-8181. DOI: 10.7150/thno.35387.
[46]
CAO C L, ZHANG D, LIU W Q. Abnormal topological parameters in the default mode network in patients with impaired cognition undergoing maintenance hemodialysis[J/OL]. Front Neurol, 2022, 13: 951302 [2023-06-28]. https://pubmed.ncbi.nlm.nih.gov/36062001/. DOI: 10.3389/fneur.2022.951302.
[47]
ZHANG D, CHEN Y Y, SHEN J, et al. Altered characteristics of brain gray matter volume and structural covariance network in maintenance hemodialysis patients without neuropsychological disorder[J]. Chin J Magn Reson Imag, 2022, 13(12): 64-68, 80. DOI: 10.12015/issn.1674-8034.2022.12.011.
[48]
YUE Z, WANG P M, LI X K, et al. Abnormal brain functional networks in end-stage renal disease patients with cognitive impairment[J/OL]. Brain Behav, 2021, 11(4): e02076 [2023-05-17]. https://pubmed.ncbi.nlm.nih.gov/33605530/. DOI: 10.1002/brb3.2076.
[49]
LEPPING R J, MONTGOMERY R N, SHARMA P, et al. Normalization of cerebral blood flow, neurochemicals, and white matter integrity after kidney transplantation[J]. J Am Soc Nephrol, 2021, 32(1): 177-187. DOI: 10.1681/ASN.2020050584.
[50]
TRYC A B, ALWAN G, BOKEMEYER M, et al. Cerebral metabolic alterations and cognitive dysfunction in chronic kidney disease[J]. Nephrol Dial Transplant, 2011, 26(8): 2635-2641. DOI: 10.1093/ndt/gfq729.
[51]
JIN M, WANG L Y, WANG H, et al. Disturbed neurovascular coupling in hemodialysis patients[J/OL]. PeerJ, 2020, 8: e8989 [2023-04-22]. https://pubmed.ncbi.nlm.nih.gov/32328355/. DOI: 10.7717/peerj.8989.
[52]
QIU X, ZENG X W, QIN M, et al. MRI study on neurovascular coupling in patients with maintenance hemodialysis of end-stage renal disease[J]. Radiol Pract, 2022, 37(12): 1493-1497. DOI: 10.13609/j.cnki.1000-0313.2022.12.006.
[53]
LI P, MA S H, MA X Y, et al. Reversal of neurovascular decoupling and cognitive impairment in patients with end-stage renal disease during a hemodialysis session: evidence from a comprehensive fMRI analysis[J]. Hum Brain Mapp, 2023, 44(3): 989-1001. DOI: 10.1002/hbm.26122.
[54]
YU Z Y, PANG H Z, LIU Y, et al. Disrupted network communication predicts mild cognitive impairment in end-stage renal disease: an individualized machine learning study based on resting-state fMRI[J]. Cereb Cortex, 2023, 33(18): 10098-10107. DOI: 10.1093/cercor/bhad269.
[55]
WANG Y F, MAO L, CHEN H J, et al. Predicting cognitive impairment in chronic kidney disease patients using structural and functional brain network: an application study of artificial intelligence[J/OL]. Prog Neuropsychopharmacol Biol Psychiatry, 2023, 122: 110677 [2023-11-10]. https://pubmed.ncbi.nlm.nih.gov/36395980/. DOI: 10.1016/j.pnpbp.2022.110677.

PREV Research progress of radiomics in predicting the efficacy of neoadjuvant chemoradiotherapy for locally advanced rectal cancer
NEXT The value of DKI and DTI in the differential diagnosis of low-grade gliomas and encephalitis
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn