Share:
Share this content in WeChat
X
Clinical Article
The value of DKI and DTI in the differential diagnosis of low-grade gliomas and encephalitis
ZHAO Kai  MA Xiaoyue  CHENG Jingliang  GAO Ankang  BAI Jie  WANG Peipei  ZHAO Guohua  GAO Eryuan  QI Jinbo 

Cite this article as: ZHAO K, MA X Y, CHENG J L, et al. The value of DKI and DTI in the differential diagnosis of low-grade gliomas and encephalitis[J]. Chin J Magn Reson Imaging, 2024, 15(2): 1-6, 55. DOI:10.12015/issn.1674-8034.2024.02.001.


[Abstract] Objective To evaluate the value of MR diffusion kurtosis imaging (DKI) and diffusion-tensor imaging (DTI) in differentiating low-grade gliomas from encephalitis.Materials and Methods The imaging data of 58 patients with either low-grade glioma or encephalitis were retrospectively collected. All patients underwent routine MRI and DKI sequence scans before surgery or conservative treatment. The DKI images were processed with NeuDiLab software to obtain the parameter maps of DKI-based mean kurtosis (MK), axial kurtosis (AK) and radial kurtosis (RK), as well as DTI-based mean diffusivity (MD), axial diffusivity (AD), radial diffusivity (RD) and fractional anisotropy (FA) and diffusion images of b=0 s/mm2 (B0). The volumes of interest (VOIs) of the tumor were manually delineated on the B0 image with ITK-SNAP software and were registered to other parametric maps. The mean values of each parameter were extracted with FAE software. Patients were divided into glioma group and encephalitis group according to pathological examination or cerebrospinal fluid examination results. The chi-square test, independent samples t test and Mann-Whitney U test were used to compare the general data, routine MRI findings and diffusion parameters between the two groups. Cohen's d values were calculated to evaluate the effect sizes of diffusion parameters. The receiver operating characteristic (ROC) curve was drawn to calculate the area under the curve (AUC), sensitivity, specificity and accuracy. The DeLong test was used to compare the differential diagnostic performance of diffusion parameters.Results A total of 51 patients were included in the study, including 29 patients with low-grade gliomas and 22 patients with encephalitis. RK demonstrated the best performance in distinguishing low-grade gliomas from the encephalitis group, with an AUC of 0.878. When the threshold was set at 0.662, the sensitivity was 72.7%, and the specificity was 89.7%. The DeLong test indicated that the diagnostic performance of the DKI model was significantly superior to DTI.Conclusions DKI is helpful in the differential diagnosis of low-grade gliomas and encephalitis.
[Keywords] glioma;encephalitis;magnetic resonance imaging;diffusion kurtosis imaging;diffusion tensor imaging

ZHAO Kai   MA Xiaoyue   CHENG Jingliang*   GAO Ankang   BAI Jie   WANG Peipei   ZHAO Guohua   GAO Eryuan   QI Jinbo  

Department of Magnetic Resonance, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China

Corresponding author: CHENG J L, E-mail: fccchengjl@zzu.edu.cn

Conflicts of interest   None.

Received  2023-08-02
Accepted  2024-01-15
DOI: 10.12015/issn.1674-8034.2024.02.001
Cite this article as: ZHAO K, MA X Y, CHENG J L, et al. The value of DKI and DTI in the differential diagnosis of low-grade gliomas and encephalitis[J]. Chin J Magn Reson Imaging, 2024, 15(2): 1-6, 55. DOI:10.12015/issn.1674-8034.2024.02.001.

[1]
LAPOINTE S, PERRY A, BUTOWSKI N A. Primary brain tumours in adults[J]. Lancet, 2018, 392(10145): 432-446. DOI: 10.1016/S0140-6736(18)30990-5.
[2]
HAN Y, YANG Y, SHI Z S, et al. Distinguishing brain inflammation from grade Ⅱ glioma in population without contrast enhancement: a radiomics analysis based on conventional MRI[J/OL]. Eur J Radiol, 2021, 134: 109467 [2023-08-02]. https://linkinghub.elsevier.com/retrieve/pii/S0720048X20306574. DOI: 10.1016/j.ejrad.2020.109467.
[3]
ZOCCARATO M, VALEGGIA S, ZULIANI L, et al. Conventional brain MRI features distinguishing limbic encephalitis from mesial temporal glioma[J]. Neuroradiology, 2019, 61(8): 853-860. DOI: 10.1007/s00234-019-02212-1.
[4]
TALATHI S, GUPTA N, REDDIVALLA N, et al. Anaplastic astrocytoma mimicking herpes simplex encephalitis in 13-year old girl[J]. Eur J Paediatr Neurol, 2015, 19(6): 722-725. DOI: 10.1016/j.ejpn.2015.07.007.
[5]
LU J, ZHANG J H, MIAO A L, et al. Brain astrocytoma misdiagnosed as anti-NMDAR encephalitis: a case report[J/OL]. BMC Neurol, 2019, 19(1): 210 [2023-08-02]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6712735. DOI: 10.1186/s12883-019-1436-x.
[6]
ZHANG L J, LU G M, WANG J D, et al. MRI findings of brain gliosis[J]. Chin J Radiol, 2010, 44(2): 217-218. DOI: 10.3760/cma.j.issn.1005-1201.2010.02.027.
[7]
TAN X Y, CHEN S H, ZHANG Y G, et al. The value of MRI scanning in the diagnosis of glioma[J]. Chin J CT & MRI, 2020, 18(9): 40-42. DOI: 10.3969/j.issn.1672-5131.2020.09.013.
[8]
PIAO S, LUO X, BAO Y, et al. An MRI-based joint model of radiomics and spatial distribution differentiates autoimmune encephalitis from low-grade diffuse astrocytoma[J/OL]. Front Neurol, 2022, 13: 998279 [2023-08-02]. https://www.frontiersin.org/articles/10.3389/fneur.2022.998279/full. DOI: 10.3389/fneur.2022.998279.
[9]
WU W, LI J, YE J, et al. Differentiation of glioma mimicking encephalitis and encephalitis using multiparametric MR-based deep learning[J/OL]. Front Oncol, 2021, 11: 639062 [2023-08-02]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8005708. DOI: 10.3389/fonc.2021.639062.
[10]
ABDEL RAZEK A A K, ALKSAS A, SHEHATA M, et al. Clinical applications of artificial intelligence and radiomics in neuro-oncology imaging[J/OL]. Insights Imaging, 2021, 12(1): 152 [2023-08-02]. https://insightsimaging.springeropen.com/articles/10.1186/s13244-021-01102-6. DOI: 10.1186/s13244-021-01102-6.
[11]
SONI N, SRINDHARAN K, KUMAR S, et al. Application of diffusion tensor imaging in brain lesions: A comparative study of neoplastic and non-neoplastic brain lesions[J]. Neurol India, 2018, 66(6): 1667-1671. DOI: 10.4103/0028-3886.246270.
[12]
GORYAWALA M Z, HEROS D O, KOMOTAR R J, et al. Value of diffusion kurtosis imaging in assessing low-grade gliomas[J]. J Magn Reson Imaging, 2018, 48(6): 1551-1558. DOI: 10.1002/jmri.26012.
[13]
GAO A, ZHANG H, YAN X, et al. Whole-tumor histogram analysis of multiple diffusion metrics for glioma genotyping[J]. Radiology, 2022, 302(3): 652-661. DOI: 10.1148/radiol.210820.
[14]
GAO E, GAO A, KUNG W KIT, et al. Histogram analysis based on diffusion kurtosis imaging: Differentiating glioblastoma multiforme from single brain metastasis and comparing the diagnostic performance of two region of interest placements[J/OL]. Eur J Radiol, 2022, 147: 110104 [2023-08-02]. https://linkinghub.elsevier.com/retrieve/pii/S0720-048X(21)00585-4. DOI: 10.1016/j.ejrad.2021.110104.
[15]
PARK Y W, VOLLMUTH P, FOLTYN-DUMITRU M, et al. The 2021 WHO classification for gliomas and implications on imaging diagnosis: Part 1-key points of the fifth edition and summary of imaging findings on adult-type diffuse gliomas[J]. J Magn Reson Imaging, 2023, 58(3): 677-689. DOI: 10.1002/jmri.28743.
[16]
HUANG Z, LU C, LI G, et al. Prediction of lower grade insular glioma molecular pathology using diffusion tensor imaging metric-based histogram parameters[J/OL]. Front Oncol, 2021, 11: 627202 [2023-08-02]. https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2021.627202/full. DOI: 10.3389/fonc.2021.627202.
[17]
SONG Y, ZHANG J, ZHANG Y D, et al. FeAture Explorer (FAE): A tool for developing and comparing radiomics models[J/OL]. PLoS One, 2020, 15(8): e0237587 [2023-08-02]. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0237587. DOI: 10.1371/journal.pone.0237587.
[18]
MA K, ZHANG X, ZHANG H, et al. Mean apparent propagator-MRI: A new diffusion model which improves temporal lobe epilepsy lateralization[J/OL]. Eur J Radiol, 2020, 126: 108914 [2023-08-02]. https://www.sciencedirect.com/science/article/abs/pii/S0720048X20301030. DOI: 10.1016/j.ejrad.2020.108914.
[19]
GUGLIELMETTI C, VERAART J, ROELANT E, et al. Diffusion kurtosis imaging probes cortical alterations and white matter pathology following cuprizone induced demyelination and spontaneous remyelination[J]. Neuroimage, 2016, 125: 363-377. DOI: 10.1016/j.neuroimage.2015.10.052.
[20]
RIVERA-ZENGOTITA M, YACHNIS A T. Gliosis versus glioma?: don't grade until you know[J]. Adv Anat Pathol, 2012, 19(4): 239-249. DOI: 10.1097/PAP.0b013e31825c6a04.
[21]
SHAO Z H, WANG G L, YI X H, et al. An intracranial gliosis mimicking neoplasm: A dilemma[J/OL]. Iran J Radiol, 2016, 13(2): e16785 [2023-08-02]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5040098. DOI: 10.5812/iranjradiol.16785.
[22]
RAAB P, HATTINGEN E, FRANZ K, et al. Cerebral gliomas: diffusional kurtosis imaging analysis of microstructural differences[J]. Radiology, 2010, 254(3): 876-881. DOI: 10.1148/radiol.09090819.
[23]
ZAMECNIK J. The extracellular space and matrix of gliomas[J]. Acta Neuropathol, 2005, 110(5): 435-442. DOI: 10.1007/s00401-005-1078-5.
[24]
HU B H, JIA Z Z, GENG D Y. Differentiation of low-grade glioma and reactive gliosis: Diagnostic value of minimum relative apparent diffusion coefficient[J]. Chinese Computed Medical Imaging, 2011, 17(3): 203-206. DOI: 10.19627/j.cnki.cn31-1700/th.2011.03.003.
[25]
ZHUO J, XU S, PROCTOR J L, et al. Diffusion kurtosis as an in vivo imaging marker for reactive astrogliosis in traumatic brain injury[J]. Neuroimage, 2012, 59(1): 467-477. DOI: 10.1016/j.neuroimage.2011.07.050.
[26]
LIU H, XIANG Y, LIU J, et al. Diffusion kurtosis imaging and diffusion tensor imaging parameters applied to white matter and gray matter of patients with anti-N-methyl-D-aspartate receptor encephalitis[J/OL]. Front Neurosci, 2022, 16: 1030230 [2023-08-02]. https://www.frontiersin.org/articles/10.3389/fnins.2022.1030230/full. DOI: 10.3389/fnins.2022.1030230.
[27]
WANG J, YI L, KANG Q M, et al. Glioma invasion along white matter tracts: A dilemma for neurosurgeons[J]. Cancer Lett, 2022, 526: 103-111. DOI: 10.1016/j.canlet.2021.11.020.
[28]
YANG X B, XU Z M, ZHANG H J, et al. Usefulness of proton MR spectroscopy for the differential diagnosis between encephalitis and glioma mimicking encephalitis[J]. J Clin Radiol, 2016, 35(12): 1796-1800. DOI: 10.13437/j.cnki.jcr.2016.12.004.
[29]
DAS S K, WANG J L, BING L, et al. Regional values of diffusional kurtosis estimates in the healthy brain during normal aging[J]. Clin Neuroradiol, 2017, 27(3): 283-298. DOI: 10.1007/s00062-015-0490-z.
[30]
OLIVIERO S, DEL GRATTA C. Impact of the acquisition protocol on the sensitivity to demyelination and axonal loss of clinically feasible DWI techniques: a simulation study[J]. MAGMA, 2021, 34(4): 523-543. DOI: 10.1007/s10334-020-00899-5.
[31]
ZHANG H, ZHOU C, ZHU Q, et al. Characteristics of microstructural changes associated with glioma related epilepsy: A diffusion tensor imaging (DTI) study[J/OL]. Brain Sci, 2022, 12(9): 1169 [2023-08-02]. https://www.mdpi.com/2076-3425/12/9/1169. DOI: 10.3390/brainsci12091169.
[32]
JIANG R, HU X, DENG K, et al. Neurite orientation dispersion and density imaging in evaluation of high-grade glioma-induced corticospinal tract injury[J/OL]. Eur J Radiol, 2021, 140: 109750 [2023-08-02]. https://www.sciencedirect.com/science/article/abs/pii/S0720048X2100231X. DOI: 10.1016/j.ejrad.2021.109750.

PREV Progress of multimodal MRI in end-stage renal disease complicated with cognitive impairment
NEXT Study on MRI features of disc-condylar complex and semiquantitative evaluation of peridisc attachment in cases of temporomandibular joint disc displacement
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn