Share:
Share this content in WeChat
X
Clinical Article
Study on MRI features of disc-condylar complex and semiquantitative evaluation of peridisc attachment in cases of temporomandibular joint disc displacement
ZHANG Guolai  LIAO Yanyang  WU Meina  ZHENG Pingping  PAN Zaixing  YAN Jinzhu 

Cite this article as: ZHANG G L, LIAO Y Y, WU M N, et al. Study on MRI features of disc-condylar complex and semiquantitative evaluation of peridisc attachment in cases of temporomandibular joint disc displacement[J]. Chin J Magn Reson Imaging, 2024, 15(2): 7-13. DOI:10.12015/issn.1674-8034.2024.02.002.


[Abstract] Objective To investigate the relationship of peridisc attachment to articular disk and condylar morphology in anterior disc displacement with reduction (ADDWR) and anterior disc displacement without reduction (ADDWoR) by analyzing the magnetic resonance imaging (MRI) features of disc-condylar complex and semi-quantitative grading method of peridiscal attachment.Materials and Methods Retrospective analysis of 74 patients (114 sides) were diagnosed with anterior disc displacement of temporomandibular joint by MRI scan at the Department of Radiology of Fujian Provincial Hospital from May 2021 to September 2022. They were divided into reduction (39 sides) and non-reduction (75 sides) groups. Joint disk morphology were divided into four types (Ⅰ-Ⅳ), condylar morphology into three types and peridisc attachment into six grades. The Kruskal-Wallis test was employed to compare the difference of joint disk morphology, condylar morphology and peridisc attachment between the two groups. The Mann-Whitney U test was used compare the overall and attachment scores of joint disk morphology, condylar morphology and peridisc attachment. Spearman rank correlation analysis was used to compare the overall score of joint disk morphology, condylar morphology and peridisc attachment, as well as the correlation coefficient of attachment and joint disk-condylar complex reducibility. Binary logistic regression was adopted to choose the independent risk factors from peridisc attachment models to predict the joint disk-condylar complex reducibility.Results Except type Ⅲ and type Ⅳ, joint disk morphology difference presented statistical significance (P<0.05). Condylar morphology difference presented statistical significance (P<0.05). Except grade 1 to 4, grade 5/grade 6, peridisc attachment grading difference presented statistical significance (P<0.05). Reduction of articular disk was strongly positively correlated to articular disk morphology, condylar morphology and total values of peridisc attachment (r=0.824, 0.626, 0.827, P<0.05). The prediction model of peridisc attachment showed that the lowerbilaminar region attachment was an independent risk factor for articular disc reduction with regression coefficient being 2.979 (OR=19.672, P<0.05).Conclusions By analyzing MRI features of disc-condylar complex and the proposed semi-quantitative evaluation, factors affecting articular disc reduction are effectively evaluated, which provides reliable imaging reference for clinical treatment.
[Keywords] temporomandibular disorders;temporomandibular joint internal derangement;disc-condylar complex;peridisc attachment;magnetic resonance imaging

ZHANG Guolai1*   LIAO Yanyang2   WU Meina3   ZHENG Pingping1   PAN Zaixing2   YAN Jinzhu3  

1 Department of Radiology, Fujian Provincial Governmental Hospital, Fuzhou 350001, China

2 Department of Stomatological, Fujian Provincial Governmental Hospital, Fuzhou 350001,China

3 Department of Neurology, Fujian Provincial Governmental Hospital, Fuzhou 350001, China

Corresponding author: ZHANG G L, E-mail: zhang200010043@126.com

Conflicts of interest   None.

Received  2023-06-07
Accepted  2024-01-21
DOI: 10.12015/issn.1674-8034.2024.02.002
Cite this article as: ZHANG G L, LIAO Y Y, WU M N, et al. Study on MRI features of disc-condylar complex and semiquantitative evaluation of peridisc attachment in cases of temporomandibular joint disc displacement[J]. Chin J Magn Reson Imaging, 2024, 15(2): 7-13. DOI:10.12015/issn.1674-8034.2024.02.002.

[1]
YADAV S, YANG Y, DUTRA E H, et al. Temporomandibular joint disorders in older adults[J]. J Am Geriatr Soc, 2018, 66(6): 1213-1217. DOI: 10.1111/jgs.15354.
[2]
SANTANA-MORA U, LÓPEZ-CEDRÚN J, SUÁREZ-QUINTANILLA J, et al. Asymmetry of dental or joint anatomy or impaired chewing function contribute to chronic temporomandibular joint disorders[J/OL]. Anat Anz Off Organ Anat Gesell, 2021, 238: 151793 [2023-06-06]. https://pubmed.ncbi.nlm.nih.gov/34186201/. DOI: 10.1016/j.aanat.2021.151793.
[3]
HADLER-OLSEN E, THON E, HOLDE G E, et al. Temporomandibular disorders in an adult population in northern Norway: a cross-sectional study[J]. Clin Exp Dent Res, 2021, 7(6): 1144-1153. DOI: 10.1002/cre2.463.
[4]
CAO D R, TAO X F,LI J. Fundamentals of Diagnostic Head and Neck Imaging (Oral and Maxillofacial Roll)[M]. Beijing: People's Medical Publishing House, 2020: 360-36.
[5]
RUNCI ANASTASI M, CASCONE P, ANASTASI G P, et al. Articular disc of a human temporomandibular joint: evaluation through light microscopy, immunofluorescence and scanning electron microscopy[J/OL]. J Funct Morphol Kinesiol, 2021, 6(1): 22 [2023-06-06]. https://pubmed.ncbi.nlm.nih.gov/33669061/. DOI: 10.3390/jfmk6010022.
[6]
FAN W P, LIU M Q, ZHANG X H, et al. MRI observation of condylar location and morphology in the patients with temporomandibular disc displacement[J]. Chin J Stomatol, 2019, 58(8): 522-526. DOI: 10.3760/cma.j.issn.1002-0098.2019.08.004.
[7]
LUO D, QIU C, ZHOU R Z, et al. MRI-based observation of the size and morphology of temporomandibular joint articular disc and condyle in young asymptomatic adults[J/OL]. Dentomaxillofac Radiol, 2022, 51(3): 20210272 [2023-06-06]. https://pubmed.ncbi.nlm.nih.gov/34644186/. DOI: 10.1259/dmfr.20210272.
[8]
GHARAVI S M, QIAO Y J, FAGHIHIMEHR A, et al. Imaging of the temporomandibular joint[J/OL]. Diagnostics, 2022, 12(4): 1006 [2023-06-06]. https://www.mdpi.com/2075-4418/12/4/1006. DOI: 10.3390/diagnostics12041006.
[9]
LI C X, LIU X, GONG Z C, et al. Morphologic analysis of condyle among different disc status in the temporomandibular joints by three-dimensional reconstructive imaging: a preliminary study[J/OL]. BMC Oral Health, 2022, 22(1): 395 [2023-06-06]. https://pubmed.ncbi.nlm.nih.gov/36096796/. DOI: 10.1186/s12903-022-02438-1.
[10]
DUAN Z F, MA Y F, SONG Y. MRI findings and correlation research status of articular and condylar process changes in temporomandibular joint disorder[J]. Stomatology, 2021, 41(12): 1138-1142. DOI: 10.13591/j.cnki.kqyx.2021.12.017.
[11]
WILKES C H. Internal derangements of the temporomandibular joint. Pathological variations[J]. Arch Otolaryngol Head Neck Surg, 1989, 115(4): 469-477. DOI: 10.1001/archotol.1989.01860280067019.
[12]
BEAUMONT S, GARG K, GOKHALE A, et al. Temporomandibular Disorder: a practical guide for dental practitioners in diagnosis and management[J]. Aust Dent J, 2020, 65(3): 172-180. DOI: 10.1111/adj.12785.
[13]
CHEN Z Y, HU M. Evaluation of temporomandibular disorder using MRI[J]. Chin J Stomatol, 2020, 55(2): 139-144. DOI: 10.3760/cma.j.issn.1002-0098.2020.02.014.
[14]
SOMAY E, YILMAZ B. Comparison of clinical and magnetic resonance imagining data of patients with temporomandibular disorders[J]. Niger J Clin Pract, 2020, 23(3): 376-380. DOI: 10.4103/njcp.njcp_492_19.
[15]
FU K Y, HU M, YU Q, et al. Experts consensus on MRI examination specification and diagnostic criteria of temporomandibular joint disc displacement[J]. Chin J Stomatol, 2020, 55(9): 608-612. DOI: 10.3760/cma.j.cn112144-20200514-00268.
[16]
LI C J, ZHANG Q B. Comparison of magnetic resonance imaging findings in 880 temporomandibular disorder patients of different age groups: a retrospective study[J/Ol]. BMC Oral Health, 2022, 22(1): 651 [2023-06-06]. https://pubmed.ncbi.nlm.nih.gov/36577982/. DOI: 10.1186/s12903-022-02666-5.
[17]
AMARAL R D E O, DAMASCENO N N, DE SOUZA L A, et al. Magnetic resonance images of patients with temporomandibular disorders: prevalence and correlation between disk morphology and displacement[J]. Eur J Radiol, 2013, 82(6): 990-994. DOI: 10.1016/j.ejrad.2013.01.002.
[18]
HU Y K, YANG C, CAI X Y, et al. MRI evaluation of disc status changes of anterior displacement with reduction and without reduction[J]. China J Oral Maxillofac Surg, 2017, 15(6): 508-514. DOI: 10.19438/j.cjoms.2017.06.006.
[19]
WANG M Q. Displacement and tissue remodeling of temporomandibular joint disc[J]. Chin J Stomatol, 2017, 52(3): 143-147. DOI: 10.3760/cma.j.issn.1002-0098.2017.03.003.
[20]
HE S J, YUAN F, LI S S. Analysis of MRI features in 52 patients with temporomandibular joint disorders[J]. J Clin Radiol, 2019, 38(11): 2052-2054. DOI: 10.13437/j.cnki.jcr.2019.11.010.
[21]
BEDRAN L M, DOS SANTOS A A S M D. Changes in temporomandibular joint anatomy, changes in condylar translation, and their relationship with disc displacement: magnetic resonance imaging study[J]. Radiol Bras, 2019, 52(2): 85-91. DOI: 10.1590/0100-3984.2018.0020.
[22]
CHEN A Q, CHEN S K, WEI J, et al. Application of MRI in the analysis of structure of disc-condyle and displacement angle of temporomandibular joint disorders[J]. J Clin Radiol, 2021, 40(7): 1291-1295. DOI: 10.13437/j.cnki.jcr.2021.07.010.
[23]
SEO B Y, AN J S, CHANG M S, et al. Changes in condylar dimensions in temporomandibular joints with disk displacement[J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2020, 129(1): 72-79. DOI: 10.1016/j.oooo.2019.04.010.
[24]
GUERCIO MONACO E, DE STEFANO A A, HERNANDEZ-ANDARA A, et al. Correlation between condylar size on CT and position of the articular disc on MRI of the temporomandibular joint[J]. Cranio, 2022, 40(1): 64-71. DOI: 10.1080/08869634.2019.1692283.
[25]
GU J N, JIAO B Q, LI Z Y. Progress of etiological research on temporomandibular joint anterior disc displacement[J]. Stomatology, 2022, 42(10): 942-945. DOI: 10.13591/j.cnk.kqyx.2022.10.015.
[26]
BAG A K, GADDIKERI S, SINGHAL A, et al. Imaging of the temporomandibular joint: an update[J]. World J Radiol, 2014, 6(8): 567-582. DOI: 10.4329/wjr.v6.i8.567.
[27]
GAO W T, LU J, GAO X, et al. Biomechanical effects of joint disc perforation on the temporomandibular joint: a 3D finite element study[J/OL]. BMC Oral Health, 2023, 23(1): 943 [2023-06-06]. https://pubmed.ncbi.nlm.nih.gov/38031042/. DOI: 10.1186/s12903-023-03521-x.
[28]
GUO F, HUANG S, LIU N, et al. Biomechanical study of temporomandibular joint prostheses with three different condylar head shapes[J]. J Med Biomech, 2022, 37(6): 1095-1100, 1144. DOI: 10.16156/j.1004-7220.2022.06.019.
[29]
CAI Q, LI S, WU Z Y, et al. Short-term efficacy of modified temporomandibular joint disc anchor for anterior disc displacement without reduction[J]. J Reg Anat Oper Surg, 2023, 32(10): 890-893. DOI: 10.11659/jjssx.11E022020.
[30]
WANG W H, ZHEN J P. MRI research progress of temporomandibular joint disorder[J]. Chin J Magn Reson Imag, 2022, 13(5): 148-150, 166. DOI: 10.12015/issn.1674-8034.2022.05.031.
[31]
WONGRATWANICH P, NAGASAKI T, SHIMABUKURO K, et al. Intra-and inter-examination reproducibility of T2 mapping for temporomandibular joint assessment at 3.0 T[J/OL]. Sci Rep, 2022, 12(1): 10993 [2023-06-06]. https://pubmed.ncbi.nlm.nih.gov/35768628/. DOI: 10.1038/s41598-022-15184-9.

PREV The value of DKI and DTI in the differential diagnosis of low-grade gliomas and encephalitis
NEXT Assessment of carotid artery stenosis and hemodynamic risk factors related to stroke based on 4D Flow MRI
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn