Share:
Share this content in WeChat
X
Clinical Article
Value of CMR feature-tracking imaging in discriminating subtypes of cardiac amyloidosis
ZHUANG Baiyan  LI Shuang  WANG Hui  ZHANG Hongkai  XU Lei 

Cite this article as: ZHUANG B Y, LI S, WANG H, et al. Value of CMR feature-tracking imaging in discriminating subtypes of cardiac amyloidosis[J]. Chin J Magn Reson Imaging, 2024, 15(2): 23-29, 62. DOI:10.12015/issn.1674-8034.2024.02.004.


[Abstract] Objective To obtain the myocardial strain values of the left ventricle at the global and regional level in patients with different subtypes of cardiac amyloidosis (CA) through cardiovascular magnetic resonance feature tracking (CMR-FT).Materials and Methods This study included patients with CA who had undergone endocardial biopsy, and 20 cases of immunoglobulin light chain cardiac amyloidosis (AL-CA) and 22 cases of transthyretin cardiac amyloidosi (ATTR-CA) were retrospectively included according to immunohistochemistry, serum immunofixation electrophoresis, and Tcm/HMDP/PYP scintillation imaging. The type and range of late gadolinium enhancement in the two groups were evaluated to reflect the differences in histological characteristics. The radial, circumferential and longitudinal strains (2D and 3D) of the whole left ventricle and myocardium layers (subepicardial and subendocardial) were obtained by CMR-FT technique, and the differences of each parameter between groups were analyzed. Receiver operator characteristic curve analysis was used to analyze the accuracy of strain parameters in distinguishing the two CA types.Results Compared with the ATTR-CA group, the left ventricular ejection fraction was slightly lower in the AL-CA group, and the left ventricular end-diastolic volume was relatively smaller, but didn't reach statistically significant. After body surface area correction, left ventricular mass in ATTR-CA group was slightly higher than that in AL-CA group [left ventricular mass index: (106.38±29.79) mL/m2 vs. (100.04±36.73) mL/m2]. The distribution of late gadolinium enhancement was more diffuse in patients with ATTR-CA type (60%) and more subendocardial in patients with AL-CA type. The absolute values of left ventricular global radial strain (3D) (12.96%±5.21% vs. 16.58%±4.39%),global longitudinal strain (2D) (-6.70%±1.94% vs. -7.87%±1.70%), global circumferential strain-epicardial (GCSepi) (-8.41%±2.78% vs. -10.51%±3.10%) and global longitudinal strain-epicardial (GLSepi) (-6.49%±2.03% vs. -8.15%±1.86%) in ATTR-CA group were lower than that in AL-CA group (all P<0.05). The accuracy of GPSepi and GLSepi were the highest, and the AUC values were both reached 0.705. Logistic regression analysis showed that GLSepi was an independent factor in distinguishing different subtypes (OR=1.60, P=0.021).Conclusions CMR-FT imaging can provide valuable information about myocardial function and strain in patients with CA. Moreover, it is capable of distinguishing between the two common subtypes, ATTR-CA and AL-CA. The left ventricular myocardial strains in ATTR-CA are lower than those in AL-CA.
[Keywords] cardiac amyloidosis;immunoglobulin light chain cardiac amyloidosis;transthyretin cardiac amyloidosi;typing;myocardial strain;cardiac magnetic resonance-feature tracking;magnetic resonance imaging

ZHUANG Baiyan   LI Shuang   WANG Hui   ZHANG Hongkai   XU Lei*  

Department of Radiology, Beijing Anzhen Hospital; Beijing Institute of Heart, Lung and Blood Vessel Diseases; Department of Medical Imaging, Capital Medical University, Beijing 100029, China

Corresponding author: XU L, E-mail: leixu2001@hotmail.com

Conflicts of interest   None.

Received  2023-07-24
Accepted  2024-01-21
DOI: 10.12015/issn.1674-8034.2024.02.004
Cite this article as: ZHUANG B Y, LI S, WANG H, et al. Value of CMR feature-tracking imaging in discriminating subtypes of cardiac amyloidosis[J]. Chin J Magn Reson Imaging, 2024, 15(2): 23-29, 62. DOI:10.12015/issn.1674-8034.2024.02.004.

[1]
CONNORS L H, SAM F, SKINNER M, et al. Heart failure resulting from age-related cardiac amyloid disease associated with wild-type transthyretin: a prospective, observational cohort study[J]. Circulation, 2016, 133(3): 282-290. DOI: 10.1161/CIRCULATIONAHA.115.018852.
[2]
SAITO Y, NAKAMURA K, ITO H. Molecular mechanisms of cardiac amyloidosis[J/OL]. Int J Mol Sci, 2021, 23(1): 25 [2023-07-23]. https://pubmed.ncbi.nlm.nih.gov/26660282/. DOI: 10.3390/ijms23010025.
[3]
GARCIA-PAVIA P, RAPEZZI C, ADLER Y, et al. Diagnosis and treatment of cardiac amyloidosis: a position statement of the ESC Working Group on Myocardial and Pericardial Diseases[J]. Eur Heart J, 2021, 42(16): 1554-1568. DOI: 10.1093/eurheartj/ehab072.
[4]
WECHALEKAR A D, GILLMORE J D, HAWKINS P N. Systemic amyloidosis[J]. Lancet, 2016, 387(10038): 2641-2654. DOI: 10.1016/S0140-6736(15)01274-X.
[5]
RUBERG F L, MAURER M S, JUDGE D P, et al. Prospective evaluation of the morbidity and mortality of wild-type and V122I mutant transthyretin amyloid cardiomyopathy: the Transthyretin Amyloidosis Cardiac Study (TRACS)[J/OL]. Am Heart J, 2012, 164(2): 222-228.e1 [2023-07-23]. https://pubmed.ncbi.nlm.nih.gov/22877808/. DOI: 10.1016/j.ahj.2012.04.015.
[6]
KASTRITIS E, LELEU X, ARNULF B, et al. Bortezomib, melphalan, and dexamethasone for light-chain amyloidosis[J]. J Clin Oncol, 2020, 38(28): 3252-3260. DOI: 10.1200/JCO.20.01285.
[7]
SIDDIQI O K, RUBERG F L. Cardiac amyloidosis: an update on pathophysiology, diagnosis, and treatment[J]. Trends Cardiovasc Med, 2018, 28(1): 10-21. DOI: 10.1016/j.tcm.2017.07.004.
[8]
MAURER M S, SCHWARTZ J H, GUNDAPANENI B, et al. Tafamidis treatment for patients with transthyretin amyloid cardiomyopathy[J]. N Engl J Med, 2018, 379(11): 1007-1016. DOI: 10.1056/NEJMoa1805689.
[9]
DESPORT E, BRIDOUX F, SIRAC C, et al. Al amyloidosis[J]. Orphanet J Rare Dis, 2012, 7: 54. DOI: 10.1186/1750-1172-7-54.
[10]
BLOOM M W, GOREVIC P D. Cardiac Amyloidosis[J/OL]. Ann Intern Med, 2023, 176(3): ITC33-ITC48 [2023-07-23]. https://pubmed.ncbi.nlm.nih.gov/36913688/. DOI: 10.7326/AITC202303210
[11]
MARTINEZ-NAHARRO A, HAWKINS P N, FONTANA M. Cardiac amyloidosis[J/OL]. Clin Med, 2018, 18(Suppl 2): s30-s35 [2023-07-23]. https://pubmed.ncbi.nlm.nih.gov/29700090/. DOI: 10.7861/clinmedicine.18-2-s30.
[12]
MARNEFFE N D, DULGHERU R, ANCION A, et al. Cardiac amyloidosis: a review of the literature[J]. Acta Cardiol, 2022, 77(8): 683-692. DOI: 10.1080/00015385.2021.1992990.
[13]
MESSROGHLI D R, MOON J C, FERREIRA V M, et al. Correction to: clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: a consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imaging (EACVI)[J/OL]. J Cardiovasc Magn Reson, 2018, 20(1): 9 [2023-07-23]. https://pubmed.ncbi.nlm.nih.gov/29415744/ DOI: 10.1186/s12968-017-0408-9.
[14]
VOGELSBERG H, MAHRHOLDT H, DELUIGI C C, et al. Cardiovascular magnetic resonance in clinically suspected cardiac amyloidosis: noninvasive imaging compared to endomyocardial biopsy[J]. J Am Coll Cardiol, 2008, 51(10): 1022-1030. DOI: 10.1016/j.jacc.2007.10.049.
[15]
REMPAKOS A, PAPAMICHAIL A, LORITIS K, et al. Non-LGE cardiac magnetic resonance imaging in patients with cardiac amyloidosis[J/OL]. Curr Pharm Des, 2022 [2023-07-23]. https://pubmed.ncbi.nlm.nih.gov/36515044/. DOI: 10.2174/1381612829666221212100114.
[16]
BRIASOULIS A, LAMA N, REMPAKOS A, et al. Diagnostic and prognostic value of non-late gadolinium enhancement cardiac magnetic resonance parameters in cardiac amyloidosis[J/OL]. Curr Probl Cardiol, 2023, 48(4): 101573 [2023-07-23]. https://pubmed.ncbi.nlm.nih.gov/36586704/. DOI: 10.1016/j.cpcardiol.2022.101573.
[17]
AQUARO G D, GORI C D, FAGGIONI L, et al. Diagnostic and prognostic role of late gadolinium enhancement in cardiomyopathies[J/OL]. Eur Heart J Suppl, 2023, 25(Suppl C): C130-C136 [2023-07-23]. https://pubmed.ncbi.nlm.nih.gov/37125322/. DOI: 10.1093/eurheartjsupp/suad015.
[18]
FONTANA M, BANYPERSAD S M, TREIBEL T A, et al. Native T1 mapping in transthyretin amyloidosis[J]. JACC Cardiovasc Imaging, 2014, 7(2): 157-165. DOI: 10.1016/j.jcmg.2013.10.008.
[19]
LAVALL D, VOSSHAGE N H, GEßNER R, et al. Native T1 mapping for the diagnosis of cardiac amyloidosis in patients with left ventricular hypertrophy[J]. Clin Res Cardiol, 2023, 112(3): 334-342. DOI: 10.1007/s00392-022-02005-2.
[20]
GAO Q, YI W F, GAO C, et al. Cardiac magnetic resonance feature tracking myocardial strain analysis in suspected acute myocarditis: diagnostic value and association with severity of myocardial injury[J/OL]. BMC Cardiovasc Disord, 2023, 23(1): 162 [2023-07-23]. https://pubmed.ncbi.nlm.nih.gov/36977995/. DOI: 10.1186/s12872-023-03201-2.
[21]
SENO A, ANTIOCHOS P, LICHTENFELD H, et al. Prognostic value of T1 mapping and feature tracking by cardiac magnetic resonance in patients with signs and symptoms suspecting heart failure and No clinical evidence of coronary artery disease[J/OL]. J Am Heart Assoc, 2022, 11(2): e020981 [2023-07-23]. https://pubmed.ncbi.nlm.nih.gov/35023344/. DOI: 10.1161/JAHA.121.020981.
[22]
KARAMITSOS T D, PAPANASTASIOU C A. Cardiac magnetic resonance T1 mapping for cardiac amyloidosis: the best way forward[J]. JACC Cardiovasc Imaging, 2020, 13(1Pt 1): 81-82. DOI: 10.1016/j.jcmg.2019.04.011.
[23]
WANG T K M, BRIZNEDA M V, KWON D H, et al. Reference ranges, diagnostic and prognostic utility of native T1 mapping and extracellular volume for cardiac amyloidosis: a meta-analysis[J]. J Magn Reson Imaging, 2021, 53(5): 1458-1468. DOI: 10.1002/jmri.27459.
[24]
EICHHORN C, GREULICH S, BUCCIARELLI-DUCCI C, et al. Multiparametric cardiovascular magnetic resonance approach in diagnosing, monitoring, and prognostication ofMyocarditis[J]. JACC Cardiovasc Imaging, 2022, 15(7): 1325-1338. DOI: 10.1016/j.jcmg.2021.11.017.
[25]
PALMIERO G, RUBINO M, MONDA E, et al. Global left ventricular myocardial work efficiency in heart failure patients with cardiac amyloidosis: pathophysiological implications and role in differential diagnosis[J]. J Cardiovasc Echogr, 2021, 31(3): 157-164. DOI: 10.4103/jcecho.jcecho_16_21.
[26]
VERSTEYLEN M O, BRONS M, TESKE A J, et al. Restrictive atrial dysfunction in cardiac amyloidosis: differences between immunoglobulin light chain and transthyretin cardiac amyloidosis patients[J/OL]. Biomedicines, 2022, 10(8): 1768 [2023-07-23]. https://pubmed.ncbi.nlm.nih.gov/35892668/. DOI: 10.3390/biomedicines10081768.
[27]
LIAO X, ZENG M, ZHANG J M, et al. Tentative discussion on cardiac magnetic resonance in differentiating common types of cardiac amyloidosis[J]. Chin J Magn Reson Imag, 2021, 12(9): 30-35. DOI: 10.12015/issn.1674-8034.2021.09.007.
[28]
WRITING COMMITTEE, KITTLESON M M, RUBERG F L, et al. 2023 ACC expert consensus decision pathway on comprehensive multidisciplinary care for the PatientWith cardiac amyloidosis: a report of the American college of cardiology solution set oversight committee[J]. J Am Coll Cardiol, 2023, 81(11): 1076-1126. DOI: 10.1016/j.jacc.2022.11.022.
[29]
SHAH S, SEGAR M W, KONDAMUDI N, et al. Supranormal left ventricular ejection fraction, stroke volume, and cardiovascular risk: findings from population-based cohort studies[J]. JACC Heart Fail, 2022, 10(8): 583-594. DOI: 10.1016/j.jchf.2022.05.007.
[30]
LIM C, BLASZCZYK E, RIAZY L, et al. Quantification of myocardial strain assessed by cardiovascular magnetic resonance feature tracking in healthy subjects-influence of segmentation and analysis software[J]. Eur Radiol, 2021, 31(6): 3962-3972. DOI: 10.1007/s00330-020-07539-5.
[31]
KAOLAWANICH Y, AZEVEDO C F, KIM H W, et al. Native T1 mapping for the diagnosis of myocardial fibrosis in patients with chronic myocardial infarction[J]. JACC Cardiovasc Imaging, 2022, 15(12): 2069-2079. DOI: 10.1016/j.jcmg.2022.09.011.
[32]
YANCY C W, FONAROW G C. Is the left ventricular ejection fraction measurement still preeminent? -new measures to quantify subclinical systolic dysfunction[J/OL]. JAMA Cardiol, 2021, 6(5): 521 [2023-07-23]. https://pubmed.ncbi.nlm.nih.gov/33729426/. DOI: 10.1001/jamacardio.2021.0143.
[33]
PEZESHKI P S, GHORASHI S M, HOUSHMAND G, et al. Feature tracking cardiac magnetic resonance imaging to assess cardiac manifestations of systemic diseases[J]. Heart Fail Rev, 2023, 28(5): 1189-1199. DOI: 10.1007/s10741-023-10321-6.
[34]
SCIACCA V, ECKSTEIN J, KÖRPERICH H, et al. Magnetic-resonance-imaging-based left atrial strain and left atrial strain rate as diagnostic parameters in cardiac amyloidosis[J/OL]. J Clin Med, 2022, 11(11): 3150 [2023-07-23]. https://pubmed.ncbi.nlm.nih.gov/35683537/. DOI: 10.3390/jcm11113150.
[35]
BRAVO P E, FUJIKURA K, KIJEWSKI M F, et al. Relative apical sparing of myocardial longitudinal strain is explained by regional differences in total amyloid mass rather than the proportion of amyloid deposits[J]. JACC Cardiovasc Imaging, 2019, 12(7 Pt 1): 1165-1173. DOI: 10.1016/j.jcmg.2018.06.016.
[36]
POTERUCHA T J, ELIAS P, RUBERG F L, et al. False positive 99mTc-pyrophosphate scanning leading to inappropriate tafamidis prescriptions[J]. JACC Cardiovasc Imaging, 2021, 14(10): 2042-2044. DOI: 10.1016/j.jcmg.2021.04.006.
[37]
FONTANA M, PICA S, REANT P, et al. Prognostic value of late gadolinium enhancement cardiovascular magnetic resonance in cardiac amyloidosis[J]. Circulation, 2015, 132(16): 1570-1579. DOI: 10.1161/CIRCULATIONAHA.115.016567.
[38]
DUNGU J N, VALENCIA O, PINNEY J H, et al. CMR-based differentiation of AL and ATTR cardiac amyloidosis[J]. JACC Cardiovasc Imaging, 2014, 7(2): 133-142. DOI: 10.1016/j.jcmg.2013.08.015.

PREV Assessment of carotid artery stenosis and hemodynamic risk factors related to stroke based on 4D Flow MRI
NEXT Study of the value of radiomics based on cardiac magnetic resonance in hypertrophic cardiomyopathy
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn