Share:
Share this content in WeChat
X
Clinical Article
Resting MRI study on the effect of δ-catenin over expression on short-term brain cognitive function in breast cancer patients after chemotherapy
XUE Mingtuan  DU Wei  CAO Jiajun  SONG Duan  ZHANG Junyi  MIAO Yanwei 

Cite this article as: XUE M T, DU W, CAO J J, et al. Resting MRI study on the effect of δ-catenin over expression on short-term brain cognitive function in breast cancer patients after chemotherapy[J]. Chin J Magn Reson Imaging, 2024, 15(2): 56-62. DOI:10.12015/issn.1674-8034.2024.02.008.


[Abstract] Objective In this study, resting state fMRI was used to investigate the changes of brain cognitive function after 2 cycles of anthracycline cyclophosphamide (AC) chemotherapy in breast cancer patients with different expression of δ-catenin.Materials and Methods A total of 66 patients with breast cancer confirmed by pathology and received standardized chemotherapy for the first time were prospectively collected. According to the level of tissue serum δ-catenin, they were divided into δ-catenin high expression group (n=31), δ-catenin low expression group (n=35) and healthy control (HC) group (n=36). All subjects received neuropsychological score and brain resting state fMRI and 3D-T1 weighted imaging before and after 2 cycles of chemotherapy. The functional indexes of brain resting state, including amplitude of low frequency fluctuation (ALFF), fractional amplitude of low frequency fluctuation (fALFF) and regional homogeneity (ReHo), the neuropsychological scores and the MRI index of brain resting state function were compared and analyzed before and after chemotherapy.Results The expression of human epidermal growth factor receptor 2 (HER-2) in δ-catenin high expression group was significantly higher than that in low expression group (P<0.05). The neurological scores of breast cancer patients before and after chemotherapy showed that there were significant differences in Functional Assessment of Cancer Therapy-Cognitive (FACT-Cog)-SUM, Perceived Cognitive Abilities (PCA), Mini Mental State Examination (MMSE), Montreal Cognitive Assessment (MOCA), Digital Symbol Substitution Test (DSST) and Auditory Verbal Learning Test (AVLT), Line-B scores in δ-catenin high expression group, while only AVLT-long-term memory scores in low expression group had significant differences (P<0.05). Compared with those before chemotherapy, there were significant differences in ALFF and ReHo values in some brain regions (P<0.05). The ALFF values of right anterior cingulate and paracingulate gyrus in δ-catenin low expression group decreased after chemotherapy, while those in δ-catenin high expression group decreased after chemotherapy in right cerebellar hemisphere area 4-5, bilateral insular and left lingual gyrus. Among the ReHo indexes, the ReHo values of the left inferior orbital frontal gyrus decreased in the δ-catenin low expression group after chemotherapy, while those in the left superior marginal gyrus and left triangular inferior frontal gyrus decreased in the δ-catenin high expression group (P<0.05).Conclusions The high expression of δ-catenin protein further aggravates the damage of brain cognitive function induced by chemotherapy in patients with breast cancer, which is mainly related to the executive regulation of cognitive function and other related brain regions.
[Keywords] breast cancer;δ-catenin;chemotherapy-related cognitive impairment;longitudinal study;resting-state brain function;magnetic resonance imaging

XUE Mingtuan1, 2   DU Wei1   CAO Jiajun1   SONG Duan2   ZHANG Junyi3   MIAO Yanwei1*  

1 Department of Radiology, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China

2 CT and MR Departments, Affiliated Hospital of Chifeng University, Chifeng 024000, China

3 Department of Pathology, Affiliated Hospital of Chifeng University, Chifeng 024000, China

Corresponding author: MIAO Y W, E-mail: ywmiao716@163.com

Conflicts of interest   None.

Received  2023-11-22
Accepted  2024-01-21
DOI: 10.12015/issn.1674-8034.2024.02.008
Cite this article as: XUE M T, DU W, CAO J J, et al. Resting MRI study on the effect of δ-catenin over expression on short-term brain cognitive function in breast cancer patients after chemotherapy[J]. Chin J Magn Reson Imaging, 2024, 15(2): 56-62. DOI:10.12015/issn.1674-8034.2024.02.008.

[1]
WANG X X, TAN Y C, LIU D H, et al. Chemotherapy-associated steatohepatitis was concomitant with epicardial adipose tissue volume increasing in breast cancer patients who received neoadjuvant chemotherapy[J]. Eur Radiol, 2022, 32(7): 4898-4908. DOI: 10.1007/s00330-022-08581-1.
[2]
SEKERES M J, BRADLEY-GARCIA M, MARTINEZ-CANABAL A, et al. Chemotherapy-induced cognitive impairment and hippocampal neurogenesis: a review of physiological mechanisms and interventions[J/OL]. Int J Mol Sci, 2021, 22(23): 12697 [2023-11-21]. https://pubmed.ncbi.nlm.nih.gov/34884513/. DOI: 10.3390/ijms222312697.
[3]
KINSLEY K, PRITCHETT W. Chemotherapy-induced cognitive impairment[J]. Clin J Oncol Nurs, 2023, 27(2): 205-208. DOI: 10.1188/23.CJON.205-208.
[4]
RODRÍGUEZ MARTÍN B, FERNÁNDEZ RODRÍGUEZ E J, RIHUETE GALVE M I, et al. Study of chemotherapy-induced cognitive impairment in women with breast cancer[J/OL]. Int J Environ Res Public Health, 2020, 17(23): 8896 [2023-11-21]. https://pubmed.ncbi.nlm.nih.gov/33265966/. DOI: 10.3390/ijerph17238896.
[5]
JANELSINS M C, KOHLI S, MOHILE S G, et al. An update on cancer- and chemotherapy-related cognitive dysfunction: current status[J]. Semin Oncol, 2011, 38(3): 431-438. DOI: 10.1053/j.seminoncol.2011.03.014.
[6]
ONZI G R, D'AGUSTINI N, GARCIA S C, et al. Chemobrain in breast cancer: mechanisms, clinical manifestations, and potential interventions[J]. Drug Saf, 2022, 45(6): 601-621. DOI: 10.1007/s40264-022-01182-3.
[7]
LIGON C, SEONG E, SCHROEDER E J, et al. δ-Catenin engages the autophagy pathway to sculpt the developing dendritic arbor[J]. J Biol Chem, 2020, 295(32): 10988-11001. DOI: 10.1074/jbc.RA120.013058.
[8]
HUANG F, CHEN J Y, WANG Z, et al. δ-Catenin promotes tumorigenesis and metastasis of lung adenocarcinoma[J]. Oncol Rep, 2018, 39(2): 809-817. DOI: 10.3892/or.2017.6140.
[9]
LEE M J, TAŞ İ, ZHOU R, et al. Development of a multiplex bead-based method for the microquantitation of δ-catenin[J]. J Nanosci Nanotechnol, 2020, 20(9): 5819-5822. DOI: 10.1166/jnn.2020.17673.
[10]
SHEN Y J, LEE H J, ZHOU R, et al. δ-catenin participates in EGF/AKT/p21Waf signaling and induces prostate cancer cell proliferation and invasion[J/OL]. Int J Mol Sci, 2021, 22(10): 5306 [2023-11-21]. https://pubmed.ncbi.nlm.nih.gov/34069970/. DOI: 10.3390/ijms22105306.
[11]
HUANG Y, WANG X X, JIANG F J, et al. The research progress in predicting the efficacy of neoadjuvant chemotherapy for breast cancer according to longitudinal images-based deep learning[J]. Chin J Magn Reson Imag, 2023, 14(3): 175-178, 183. DOI: 10.12015/issn.1674-8034.2023.03.032.
[12]
LI Z Y, LIU Z J, LI L, et al. The mechanism research of δ-catenin promoting epithelial mesenchymal transition of breast cancer cells through P13K/AKT signaling pathway[J]. Beijing Medical Journal, 2022, 44(11): 974-983. DOI: 10.15932/j.0253-9713.2022.11.003.
[13]
HUANG C F, VERHULST S, SHEN Y, et al. AKR1B10 promotes breast cancer metastasis through integrin α5/δ-catenin mediated FAK/Src/Rac1 signaling pathway[J]. Oncotarget, 2016, 7(28): 43779-43791. DOI: 10.18632/oncotarget.9672.
[14]
ZHANG D, ZHANG J Y, WANG E H. δ-Catenin promotes the malignant phenotype in breast cancer[J]. Tumor Biol, 2015, 36(2): 569-575. DOI: 10.1007/s13277-014-2680-8.
[15]
BAI D, MA C, WANG C J, et al. fMRI research on regional homogeneity and functional connectivity changes of brain regions in patients with end-stage renal disease[J]. Chin J Magn Reson Imag, 2022, 13(6): 66-70. DOI: 10.12015/issn.1674-8034.2022.06.013.
[16]
CHEN B T, CHEN Z K, PATEL S K, et al. Effect of chemotherapy on default mode network connectivity in older women with breast cancer[J]. Brain Imaging Behav, 2022, 16(1): 43-53. DOI: 10.1007/s11682-021-00475-y.
[17]
LANGE M, GIFFARD B, NOAL S, et al. Baseline cognitive functions among elderly patients with localised breast cancer[J]. Eur J Cancer, 2014, 50(13): 2181-2189. DOI: 10.1016/j.ejca.2014.05.026.
[18]
GARCÍA-SÁNCHEZ J, TORREGROSA M D, CAULI O. Cognitive functions under anti-HER2 targeted therapy in cancer patients: a scoping review[J]. Endocr Metab Immune Disord Drug Targets, 2021, 21(7): 1163-1170. DOI: 10.2174/1871530320666200729153009.
[19]
BOSE R, MOLINA H, PATTERSON A S, et al. Phosphoproteomic analysis of Her2/neu signaling and inhibition[J]. Proc Natl Acad Sci USA, 2006, 103(26): 9773-9778. DOI: 10.1073/pnas.0603948103.
[20]
JOHNSON E, SEACHRIST D D, DELEON-RODRIGUEZ C M, et al. HER2/ErbB2-induced breast cancer cell migration and invasion require p120 catenin activation of Rac1 and Cdc42[J]. J Biol Chem, 2010, 285(38): 29491-29501. DOI: 10.1074/jbc.M110.136770.
[21]
JU L C, SHAN L P, YIN B, et al. δ-Catenin regulates proliferation and apoptosis in renal cell carcinoma via promoting β-catenin nuclear localization and activating its downstream target genes[J]. Cancer Med, 2020, 9(6): 2201-2212. DOI: 10.1002/cam4.2857.
[22]
CHEN Z Y, ZHANG R, HUO H F, et al. Functional connectome of human cerebellum[J/OL]. NeuroImage, 2022, 251: 119015 [2023-11-21]. https://pubmed.ncbi.nlm.nih.gov/35189360/. DOI: 10.1016/j.neuroimage.2022.119015.
[23]
PANG L L, FAN B L, CHEN Z R, et al. Disruption of cerebellar-cerebral functional connectivity in temporal lobe epilepsy and the connection to language and cognitive functions[J/OL]. Front Neurosci, 2022, 16: 871128 [2023-11-21]. https://pubmed.ncbi.nlm.nih.gov/35837122/. DOI: 10.3389/fnins.2022.871128.
[24]
WEN Y, LIU B, WANG X C. Preliminary study of brain resting state functional magnetic resonance local consistency analysis in patients with mild cognitive impairment[J]. Chin J Magn Reson Imag, 2020, 11(4): 253-258. DOI: 10.12015/issn.1674-8034.2020.04.003.
[25]
PARK H Y, LEE H, SOHN J, et al. Increased resting-state cerebellar-cortical connectivity in breast cancer survivors with cognitive complaints after chemotherapy[J/OL]. Sci Rep, 2021, 11(1): 12105 [2023-11-21]. https://pubmed.ncbi.nlm.nih.gov/34103606/. DOI: 10.1038/s41598-021-91447-1.
[26]
BAI X R, ZHENG J, ZHANG B, et al. Cognitive dysfunction and neurophysiologic mechanism of breast cancer patients undergoing chemotherapy based on resting state functional magnetic resonance imaging[J/OL]. World Neurosurg, 2021, 149: 406-412 [2023-11-21]. https://pubmed.ncbi.nlm.nih.gov/33096278/. DOI: 10.1016/j.wneu.2020.10.066.
[27]
DUPARC R H, BOUTEMMINE D, CHAMPAGNE M P, et al. Pax6 is required for delta-catenin/neurojugin expression during retinal, cerebellar and cortical development in mice[J]. Dev Biol, 2006, 300(2): 647-655. DOI: 10.1016/j.ydbio.2006.07.045.
[28]
VAN ROOTSELAAR A F, GROFFEN A J, DE VRIES B, et al. δ-Catenin (CTNND2) missense mutation in familial cortical myoclonic tremor and epilepsy[J]. Neurology, 2017, 89(23): 2341-2350. DOI: 10.1212/WNL.0000000000004709.
[29]
ROYER J, PAQUOLA C, LARIVIÈRE S, et al. Myeloarchitecture gradients in the human insula: Histological underpinnings and association to intrinsic functional connectivity[J/OL]. Neuroimage, 2020, 216: 116859 [2023-11-21]. https://pubmed.ncbi.nlm.nih.gov/32325211/. DOI: 10.1016/j.neuroimage.2020.116859.
[30]
WEI X Y, CHEN H, GONG Z G, et al. Acupuncture changes the functional connectivity of the right insula in asthma: a fMRI study[J]. Chin J Magn Reson Imag, 2021, 12(6): 72-77. DOI: 10.12015/issn.1674-8034.2021.06.014.
[31]
ZHONG L Z, DONG D, FANG X L, et al. A deep learning-based radiomic nomogram for prognosis and treatment decision in advanced nasopharyngeal carcinoma: a multicentre study[J/OL]. EBioMedicine, 2021, 70: 103522 [2023-11-21]. https://pubmed.ncbi.nlm.nih.gov/34391094/. DOI: 10.1016/j.ebiom.2021.103522.
[32]
XU C Y, ZHAN S H, TAN W L, et al. Observation on gender differences of brain functional activity in migraine patients without aura using dynamic low-frequency amplitude[J]. Chin J Med Imag Technol, 2023, 39(4): 503-508. DOI: 10.13929/j.issn.1003-3289.2023.04.005.
[33]
NIMARKO A F, GARRETT A S, CARLSON G A, et al. Neural correlates of emotion processing predict resilience in youth at familial risk for mood disorders[J]. Dev Psychopathol, 2019, 31(3): 1037-1052. DOI: 10.1017/S0954579419000579.
[34]
SKLAR A L, COFFMAN B A, SALISBURY D F. Fronto-parietal network function during cued visual search in the first-episode schizophrenia spectrum[J/OL]. J Psychiatr Res, 2021, 141: 339-345 [2023-11-21]. https://pubmed.ncbi.nlm.nih.gov/34304038/. DOI: 10.1016/j.jpsychires.2021.07.014.
[35]
CAREY G, LOPES R, MOONEN A J H, et al. Cognitive behavioral therapy for anxiety in Parkinson's disease induces functional brain changes[J]. J Parkinsons Dis, 2023, 13(1): 93-103. DOI: 10.3233/JPD-223527.
[36]
YI X P, FU Y, ZHANG Z J, et al. Altered regional homogeneity and its association with cognitive function in adolescents with borderline personality disorder[J/OL]. J Psychiatry Neurosci, 2023, 48(1): E1-E10 [2023-11-21]. https://pubmed.ncbi.nlm.nih.gov/36596589/. DOI: 10.1503/jpn.220144.

PREV Surface-based morphological study on the relationship between cortical surface morphological changes and cancer-related fatigue changes in early chemotherapy for breast cancer
NEXT Development of a nomogram based on diffusion weighted imaging of peritumoral liver tissue to predict local progression of recurrent hepatocellular carcinoma after hepatectomy
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn