Share:
Share this content in WeChat
X
Clinical Article
Development of a nomogram based on diffusion weighted imaging of peritumoral liver tissue to predict local progression of recurrent hepatocellular carcinoma after hepatectomy
WANG Jing  ZENG Chaoqiang  TANG Mengyue  XU Min  ZHANG Xiaoming  CHEN Tianwu 

Cite this article as: WANG J, ZENG C Q, TANG M Y, et al. Development of a nomogram based on diffusion weighted imaging of peritumoral liver tissue to predict local progression of recurrent hepatocellular carcinoma after hepatectomy[J]. Chin J Magn Reson Imaging, 2024, 15(2): 63-70. DOI:10.12015/issn.1674-8034.2024.02.009.


[Abstract] Objective To investigate feasibility of a nomogram model developed with apparent diffusion coefficient (ADC) of peritumoral liver tissue to predict local progression of recurrent hepatocellular carcinoma (rHCC) after hepatectomy.Materials and Methods A retrospective cohort study was conducted by collecting MRI and clinical data of patients with diagnosed rHCC after hepatectomy at the Affiliated Hospital of North Sichuan Medical College from January 2021 to December 2022. Using Firevoxel software, the peritumor mean ADC (pADCmean), minimum ADC (pADCmin), and maximum ADC (pADCmax) values, as well as the tumor mean ADC (tADCmean), minimum ADC (tADCmin), and maximum (tADCmax) values were measured. The background liver tissue mean ADC (bADCmean), minimum ADC (bADCmin), and maximum ADC (bADCmax) values were also obtained. The ratios of pADCmean to bADCmean (RPB-ADCmean), ADCmin (RPB-ADCmin), and ADCmax (RPB-ADCmax) along with the ratios of tADCmean to bADCmean (RTB-ADCmean), ADCmin (RTB-ADCmin), and ADCmax (RTB-ADCmax) were calculated. Cox regression analysis was used to identify independent risk factors, and then a nomogram model was constructed to predict local progression of rHCC after hepatectomy. Receiver operating characteristic (ROC) curve and decision curve analysis (DCA) were employed to evaluate the predictive value of the model for prediction of local progression of rHCC.Results A total of 70 patients with rHCC after hepatectomy were enrolled, and the local progression rate of rHCC was 65.7% (46/70) confirmed by follow-up. Multivariate Cox regression analysis revealed that RPB-ADCmean, pADCmin and vitamin K absence antagonist-Ⅱ were independent risk factors for local progression of rHCC after hepatectomy (all P<0.05). The area under the ROC curve of the nomogram model to predict local progression of rHCC within 3 months and within 6 months after hepatectomy was 0.834 and 0.841, respectively. DCA demonstrated a favorable clinical net benefit of the model.Conclusions The pADCmin, RPB-ADCmean and vitamin K absence antagonist-Ⅱ can be independent risk factors associated with local progression of rHCC after hepatectomy, and the developed nomogram model can intuitively predict local progression of rHCC with good performance and net clinical benefit.
[Keywords] hepatocellular carcinoma;recurrence;peritumoral tissue;magnetic resonance imaging;diffusion weighted imaging;nomogram

WANG Jing1, 2   ZENG Chaoqiang2   TANG Mengyue1   XU Min1   ZHANG Xiaoming1   CHEN Tianwu3*  

1 Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Sichuan Key Laboratory of Medical Imaging, Nanchong 637000, China

2 Department of Imaging, the Second Clinical School of North Sichuan Medical College/Nanchong Central Hospital, Nanchong 637000, China

3 Department of Radiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China

Corresponding author: CHEN T W, E-mail: tianwuchen_nsmc@163.com

Conflicts of interest   None.

Received  2023-10-22
Accepted  2024-01-05
DOI: 10.12015/issn.1674-8034.2024.02.009
Cite this article as: WANG J, ZENG C Q, TANG M Y, et al. Development of a nomogram based on diffusion weighted imaging of peritumoral liver tissue to predict local progression of recurrent hepatocellular carcinoma after hepatectomy[J]. Chin J Magn Reson Imaging, 2024, 15(2): 63-70. DOI:10.12015/issn.1674-8034.2024.02.009.

[1]
XIA C F, DONG X S, LI H, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants[J]. Chin Med J, 2022, 135(5): 584-590. DOI: 10.1097/CM9.0000000000002108.
[2]
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
[3]
LIU J K H, IRVINE A F, JONES R L, et al. Immunotherapies for hepatocellular carcinoma[J]. Cancer Med, 2022, 11(3): 571-591. DOI: 10.1002/cam4.4468.
[4]
YAMAMOTO M, KOBAYASHI T, HONMYO N, et al. Liver resection is associated with good outcomes for hepatocellular carcinoma patients beyond the Barcelona Clinic Liver Cancer criteria: a multicenter study with the Hiroshima Surgical study group of Clinical Oncology[J]. Surgery, 2022, 171(5): 1303-1310. DOI: 10.1016/j.surg.2021.09.009.
[5]
SHIN S W, AHN K S, KIM S W, et al. Liver resection versus local ablation therapies for hepatocellular carcinoma within the Milan criteria: A systematic review and meta-analysis[J]. Ann Surg, 2021, 273(4): 656-666. DOI: 10.1097/SLA.0000000000004350.
[6]
INVERNIZZI F, IAVARONE M, ZAVAGLIA C, et al. Experience with early sorafenib treatment with mTOR inhibitors in hepatocellular carcinoma recurring after liver transplantation[J]. Transplantation, 2020, 104(3): 568-574. DOI: 10.1097/TP.0000000000002955.
[7]
GU H Y, LI J, YOU N, et al. Efficacy and safety of apatinib combined with transarterial chemoembolization (TACE) in treating patients with recurrent hepatocellular carcinoma[J/OL]. Ann Transl Med, 2020, 8(24): 1677 [2023-12-19]. https://pubmed.ncbi.nlm.nih.gov/33490189/. DOI: 10.21037/atm-20-7244.
[8]
PAPACONSTANTINOU D, TSILIMIGRAS D I, PAWLIK T M. Recurrent hepatocellular carcinoma: patterns, detection, staging and treatment[J]. J Hepatocell Carcinoma, 2022, 9: 947-957. DOI: 10.2147/JHC.S342266.
[9]
BAI R L, CUI J W. Tumor heterogeneity: the great challenge in precision clinical diagnosis and treatment[J]. Chin J Clin Oncol, 2020, 47(21): 1082-1087. DOI: 10.3969/j.issn.1000-8179.2020.21.341.
[10]
PAVLOVIĆ N, CALITZ C, THANAPIROM K, et al. Inhibiting IRE1α-endonuclease activity decreases tumor burden in a mouse model for hepatocellular carcinoma[J/OL]. eLife, 2020, 9: e55865 [2023-12-19]. https://pubmed.ncbi.nlm.nih.gov/33103995/. DOI: 10.7554/eLife.55865.
[11]
JEONG J H, JANG H J, KWAK S, et al. Novel TGF-β1 inhibitor antagonizes TGF-β1-induced epithelial-mesenchymal transition in human A549 lung cancer cells[J]. J Cell Biochem, 2019, 120(1): 977-987. DOI: 10.1002/jcb.27460.
[12]
QUAN H, SHI L, CHEN J, et al. Research progress of tumor microenvironment in hepatocelluar carcinoma[J]. Anti Tumor Pharm, 2023, 13(2): 150-154. DOI: 10.3969/j.issn.2095-1264.2023.02.03.
[13]
WU X, DENG Z, ZHAO Q Q. Immunotherapy improves disease prognosis by affecting the tumor microenvironment: a bibliometric study[J/OL]. Front Immunol, 2022, 13: 967076 [2023-12-19]. https://pubmed.ncbi.nlm.nih.gov/36275770/. DOI: 10.3389/fimmu.2022.967076.
[14]
MARQUES M P M, SANTOS I P, BATISTA DE CARVALHO A L M, et al. Water dynamics in human cancer and non-cancer tissues[J]. Phys Chem Chem Phys, 2022, 24(25): 15406-15415. DOI: 10.1039/d2cp00621a.
[15]
MORI N, MUGIKURA S, TAKASAWA C, et al. Peritumoral apparent diffusion coefficients for prediction of lymphovascular invasion in clinically node-negative invasive breast cancer[J]. Eur Radiol, 2016, 26(2): 331-339. DOI: 10.1007/s00330-015-3847-4.
[16]
DENG L, WANG Q P, YAN R, et al. The utility of measuring the apparent diffusion coefficient for peritumoral zone in assessing infiltration depth of endometrial cancer[J/OL]. Cancer Imaging, 2018, 18(1): 23 [2023-12-19]. https://pubmed.ncbi.nlm.nih.gov/29970170/. DOI: 10.1186/s40644-018-0156-6.
[17]
YUAN Y, CHEN X L, LI Z L, et al. The application of apparent diffusion coefficients derived from intratumoral and peritumoral zones for assessing pathologic prognostic factors in rectal cancer[J]. Eur Radiol, 2022, 32(8): 5106-5118. DOI: 10.1007/s00330-022-08717-3.
[18]
ZHANG Z H, YU J, LIU S S, et al. Multiparametric liver MRI for predicting early recurrence of hepatocellular carcinoma after microwave ablation[J/OL]. Cancer Imaging, 2022, 22(1): 42 [2023-12-19]. https://pubmed.ncbi.nlm.nih.gov/36042507/. DOI: 10.1186/s40644-022-00471-5.
[19]
LEE S, KIM K W, JEONG W K, et al. Liver imaging reporting and data system category on magnetic resonance imaging predicts recurrence of hepatocellular carcinoma after liver transplantation within the Milan criteria: a multicenter study[J]. Ann Surg Oncol, 2021, 28(11): 6782-6789. DOI: 10.1245/s10434-021-09772-8.
[20]
PARK S H, HEO S, KIM B, et al. Targetoid primary liver malignancy in chronic liver disease: prediction of postoperative survival using preoperative MRI findings and clinical factors[J]. Korean J Radiol, 2023, 24(3): 190-203. DOI: 10.3348/kjr.2022.0560.
[21]
ZHANG L, HU J M, HOU J Y, et al. Radiomics-based model using gadoxetic acid disodium-enhanced MR images: associations with recurrence-free survival of patients with hepatocellular carcinoma treated by surgical resection[J]. Abdom Radiol, 2021, 46(8): 3845-3854. DOI: 10.1007/s00261-021-03034-7.
[22]
XIA Y, YANG T, WANG K. Chinese expert consensus on the preventation and management of recurrent hepatocellular carcinoma after hepatic resection(2020 edition)[J]. Chin J Pract Surg, 2021, 41(1): 20-30. DOI: 10.19538/j.cjps.issn1005-2208.2021.01.03.
[23]
LENCIONI R, LLOVET J M. Modified RECIST (mRECIST) assessment for hepatocellular carcinoma[J]. Semin Liver Dis, 2010, 30(1): 52-60. DOI: 10.1055/s-0030-1247132.
[24]
LI Z, ZHU J Y. Interpretation of Standard for diagnosis and treatment of primary liver cancer (2022 edition)[J]. J Clin Hepatol, 2022, 38(5): 1027-1029. DOI: 10.3969/j.issn.1001-5256.2022.05.010.
[25]
China Anti Cancer Association Liver Cancer Professional Committee, Hepatology Group of Hepatology Branch of Chinese Medical Association, Chinese Societies of Pathology, Pathology Professional Committee of China Anti Cancer Association, et al. Evidence-based practice guidelines for the standardized pathological diagnosis of primary liver cancer (2015 edition)[J]. Chin J Hepatobiliary Surg, 2015, 21(3): 145-151. DOI: 10.3760/cma.j.issn.1007-8118.2015.03.001.
[26]
WANG G, XIE N. Value of diffusion imaging of magnetic resonance function in pathological grading and liver fibrosis in patients with liver cirrhosis[J]. J Clin Med Pract, 2019, 23(19): 37-40, 44. DOI: 10.7619/jcmp.201919010.
[27]
PAN Z X, LI Z J, MENG F Q, et al. Fat- and iron-corrected ADC to assess liver fibrosis in patients with chronic hepatitis B[J]. Diagn Interv Radiol, 2022, 28(1): 5-11. DOI: 10.5152/dir.2021.21471.
[28]
OH E, LEE H. Transcriptomic data in tumor-adjacent normal tissues harbor prognostic information on multiple cancer types[J]. Cancer Med, 2023, 12(10): 11960-11970. DOI: 10.1002/cam4.5864.
[29]
YUAN T, QIN Y X, WU Y P, et al. A comparative study on MR diffusion weighted imaging of hepatocellular carcinoma tissue, para-cancer tissue, far-cancer tissue and background liver tissue[J]. J Pract Radiol, 2022, 38(8): 1293-1296. DOI: 10.3969/j.issn.1002-1671.2022.08.017.
[30]
CHENG M Y, YANG Z, FAN J W, et al. Clinical value of a nomogram model based on ADC values within 1 cm around the tumor for predicting the postoperative progression of glioma[J]. Chin J Magn Reson Imag, 2023, 14(1): 136-142, 150. DOI: 10.12015/issn.1674-8034.2023.01.024.
[31]
MAO N, SHI Y H, LIAN C, et al. Intratumoral and peritumoral radiomics for preoperative prediction of neoadjuvant chemotherapy effect in breast cancer based on contrast-enhanced spectral mammography[J]. Eur Radiol, 2022, 32(5): 3207-3219. DOI: 10.1007/s00330-021-08414-7.
[32]
HIGAKI A, KANKI A, YAMAMOTO A, et al. Liver cirrhosis: relationship between fibrosis-associated hepatic morphological changes and portal hemodynamics using four-dimensional flow magnetic resonance imaging[J]. Jpn J Radiol, 2023, 41(6): 625-636. DOI: 10.1007/s11604-023-01388-0.
[33]
TAN H, FAN Q J, YU Y, et al. The correlation between the quantitative variation of hepatic segment volume and liver function in hepatitis B-related cirrhotic liver: based on couinaud segments[J]. J Clin Radiol, 2017, 36(8): 1124-1128. DOI: 10.13437/j.cnki.jcr.2017.08.019.
[34]
BAJGIRAN A M, MIRAK S A, SUNG K, et al. Apparent diffusion coefficient (ADC) ratio versus conventional ADC for detecting clinically significant prostate cancer with 3-T MRI[J/OL]. AJR Am J Roentgenol, 2019, 213(3): W134-W142 [2023-12-19]. https://pubmed.ncbi.nlm.nih.gov/31216201/. DOI: 10.2214/AJR.19.21365.
[35]
ZHONG X, TANG H S, GUAN T P, et al. Added value of quantitative apparent diffusion coefficients for identifying small hepatocellular carcinoma from benign nodule categorized as LI-RADS 3 and 4 in cirrhosis[J]. J Clin Transl Hepatol, 2022, 10(1): 34-41. DOI: 10.14218/JCTH.2021.00053.
[36]
ONO A, HASHIMOTO T, SHISHIDO T, et al. Clinical value of minimum apparent diffusion coefficient for prediction of clinically significant prostate cancer in the transition zone[J]. Int J Clin Oncol, 2023, 28(5): 716-723. DOI: 10.1007/s10147-023-02324-y.
[37]
WANG Y T, ZHU Y, LU Y, et al. The relationship between values of ADCmin and ADCmean and pathological features of liver cancer: a primary study[J]. J China Clin Med Imag, 2017, 28(11): 805-809. DOI: 10.3969/j.issn.1008-1062.2017.11.011.
[38]
YU W W, LI Q Y, LUO Y C, et al. Application of PIVKA-Ⅱin clinical diagnosis and treatment of hepatocellular carcinoma[J]. J Interv Radiol, 2021, 30(11): 1193-1196. DOI: 10.3969/j.issn.1008-794X.2021.11.025.
[39]
WANG S, ZHENG Y F, ZHENG H L, et al. MRI signs for diagnosis of positive PIVKA- Ⅱ in patients with hepatocellular carcinoma[J]. Zhejiang Med J, 2021, 43(2): 157-160, 179. DOI: 10.12056/j.issn.1006-2785.2021.43.2.2020-2445.

PREV Resting MRI study on the effect of δ-catenin over expression on short-term brain cognitive function in breast cancer patients after chemotherapy
NEXT Study on the detection efficiency of 18F-PSMA-1007 PET/CT and mp-MRI in prostate cancer and its correlation with pathological grade
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn