Share:
Share this content in WeChat
X
Clinical Article
Differential diagnosis of MRI apparent diffusion coefficient for high-risk prostate cancer in the transition zone and its correlation with pathological grading group
LI Peng  LI Yan  XU Jie  JING Li 

Cite this article as: LI P, LI Y, XU J, et al. Differential diagnosis of MRI apparent diffusion coefficient for high-risk prostate cancer in the transition zone and its correlation with pathological grading group[J]. Chin J Magn Reson Imaging, 2024, 15(2): 77-82, 89. DOI:10.12015/issn.1674-8034.2024.02.011.


[Abstract] Objective To investigate the differential diagnostic value of apparent diffusion coefficient (ADC) and relative ADC values of diffusion weighted imaging (DWI) for high-risk prostate cancer (hPCa) in the transition zone and their correlation with International Society of Urological Pathology (ISUP) grading group (GG).Materials and Methods Retrospective analysis was performed on biparametric MRI data from 40 patients with transition zone prostate cancer confirmed by pathology. This analysis involved measuring the mean ADC (ADCmean) and minimum ADC (ADCmin) of transition zone prostate cancer and stromal hyperplastic nodules. Additionally, it calculated the relative ADCmean (rADCmean) and relative ADCmin (rADCmin), defined as the ratio of ADC values between transition zone carcinoma foci and stromal hyperplastic nodules. The receiver operating characteristic (ROC) curve was used to assess the diagnostic efficacy of each ADC parameter for hPCa in the transition zone and to determine the optimal cutoff value based on the Youden's index. DeLong's test was used to compare the differences in area under the curve (AUC) of the ROC curve. Spearman correlation analysis was performed to analyze the correlation between each of the ADC parameters and ISUP GG.Results The values of ADCmean, ADCmin, rADCmean and rADCmin in the hPCa group were lower than those in the lPCa group (all P<0.05). The AUCs for the differential diagnosis of hPCa in the transition zone were 0.775 [95% confidence interval (CI): 0.615-0.892]、0.879 (95% CI: 0.736-0.960)、0.751 (95% CI: 0.589-0.874) and 0.914 (95% CI: 0.782-0.979) for ADCmean, ADCmin, rADCmean and rADCmin, respectively. The maximum AUC was observed with rADCmin. rADCmin showed statistically significant differences in AUC compared to both ADCmean and rADCmean (all P<0.05), but not with ADCmin (P>0.05). When the optimal cutoff value of rADCmin was taken as 0.664×10-3 mm2/s with the highest Youden's index (0.783), the sensitivity and specificity of diagnosing hPCa in the transition zone were 100.00% and 78.26%, respectively. ADCmean, ADCmin, rADCmean and rADCmin values were all negatively correlated with ISUP GG [r=-0.486 (95% CI: -0.755--0.151), -0.613 (95% CI: -0.769--0.365), -0.553 (95% CI: -0.745--0.260) and -0.678 (95% CI: -0.810--0.474, all P≤0.001].Conclusions The efficacy of rADCmin in differential diagnosing hPCa in the transition zone was high. rADCmin was able to noninvasively predict ISUP GG of PCa in the transition zone, which can help to provide personalized treatment decision support for patients.
[Keywords] prostate neoplasms;prostate hyperplasia;transition zone;magnetic resonance imaging;apparent diffusion coefficient;grading group

LI Peng1, 2   LI Yan1   XU Jie2   JING Li2*  

1 Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan 750004, China

2 Department of Pathology, School of Basic Medical Science, Ningxia Medical University, Yinchuan 750004, China

Corresponding author: JING L, E-mail: jinglinxmu@163.com

Conflicts of interest   None.

Received  2023-11-20
Accepted  2024-01-20
DOI: 10.12015/issn.1674-8034.2024.02.011
Cite this article as: LI P, LI Y, XU J, et al. Differential diagnosis of MRI apparent diffusion coefficient for high-risk prostate cancer in the transition zone and its correlation with pathological grading group[J]. Chin J Magn Reson Imaging, 2024, 15(2): 77-82, 89. DOI:10.12015/issn.1674-8034.2024.02.011.

[1]
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
[2]
YE D W, ZHU Y. Epidemiology of prostate cancer in China: an overview and clinical implication[J]. Chin J Surg, 2015(4): 249-252. DOI: 10.3760/cma.j.issn.0529-5815.2015.04.003.
[3]
EPSTEIN J I, EGEVAD L, AMIN M B, et al. The 2014 international society of urological pathology (ISUP) consensus conference on gleason grading of prostatic carcinoma: definition of grading patterns and proposal for a new grading system[J]. Am J Surg Pathol, 2016, 40(2): 244-252. DOI: 10.1097/PAS.0000000000000530.
[4]
XIAO Z J, REN J, HAN Y, et al. The anatomic zone localization based on biparametric MRI for the prediction of the risk degree of prostate cancer[J]. Natl Med J China, 2023, 103(19): 1455-1460. DOI: 10.3760/cma.j.cn112137-20221219-02677.
[5]
TELOKEN P E, LI J, WOODS C G, et al. The impact of prostate cancer zonal origin on pathological parameters at radical prostatectomy and subsequent biochemical failure[J]. J Urol, 2017, 198(6): 1316-1323. DOI: 10.1016/j.juro.2017.05.075.
[6]
PAN Y S, SHEN C, CHEN X F, et al. bpMRI and mpMRI for detecting prostate cancer: a retrospective cohort study[J/OL]. Front Surg, 2022, 9: 1096387 [2023-10-21]. https://pubmed.ncbi.nlm.nih.gov/36726941/. DOI: 10.3389/fsurg.2022.1096387.
[7]
LIU Y Y, WANG S, XU G, et al. Effectiveness and accuracy of MRI-ultrasound fusion targeted biopsy based on PI-RADS v2.1 category in transition/peripheral zone of the prostate[J]. J Magn Reson Imaging, 2023, 58(3): 709-717. DOI: 10.1002/jmri.28614.
[8]
AYDIN H, TOPSAKAL K, AYYILDIZ V A, et al. Quantitative evaluation of late gadolinium enhancement to the differential diagnosis of prostate cancer and prostatitis in mpMRI[J]. J Coll Physicians Surg Pak, 2023, 33(1): 20-26. DOI: 10.29271/jcpsp.2023.01.20.
[9]
KAZAN O, GUNDUZ N, KIR G, et al. The cribriform morphology impairs Gleason 7 prostate cancer lesion detection on multiparametric magnetic resonance imaging[J]. Prostate, 2023, 83(4): 331-339. DOI: 10.1002/pros.24465.
[10]
TURKBEY B, ROSENKRANTZ A B, HAIDER M A, et al. Prostate imaging reporting and data system version 2.1: 2019 update of prostate imaging reporting and data system version 2[J]. Eur Urol, 2019, 76(3):340-351. DOI: 10.1016/j.eururo.2019.02.033.
[11]
LIM C S, ABREU-GOMEZ J, CARRION I, et al. Prevalence of prostate cancer in PI-RADS version 2.1 transition zone atypical nodules upgraded by abnormal DWI: correlation with MRI-directed TRUS-guided targeted biopsy[J]. AJR Am J Roentgenol, 2021, 216(3): 683-690. DOI: 10.2214/AJR.20.23932.
[12]
TAVAKOLI A A, HIELSCHER T, BADURA P, et al. Contribution of dynamic contrast-enhanced and diffusion MRI to PI-RADS for detecting clinically significant prostate cancer[J]. Radiology, 2023, 306(1): 186-199. DOI: 10.1148/radiol.212692.
[13]
INGOLE S M, MEHTA R U, KAZI Z N, et al. Multiparametric magnetic resonance imaging in evaluation of clinically significant prostate cancer[J]. Indian J Radiol Imaging, 2021, 31(1): 65-77. DOI: 10.1055/s-0041-1730093.
[14]
KARAARSLAN E, ALTAN KUS A, ALIS D, et al. Performance of apparent diffusion coefficient values and ratios for the prediction of prostate cancer aggressiveness across different MRI acquisition settings[J]. Diagn Interv Radiol, 2022, 28(1): 12-20. DOI: 10.5152/dir.2022.20732.
[15]
ZHU G B, LUO J W, OUYANG Z M, et al. The assessment of prostate cancer aggressiveness using a combination of quantitative diffusion-weighted imaging and dynamic contrast-enhanced magnetic resonance imaging[J]. Cancer Manag Res, 2021, 13: 5287-5295. DOI: 10.2147/CMAR.S319306.
[16]
FAIELLA E, SANTUCCI D, VERTULLI D, et al. The role of multiparametric MRI in the diagnosis of local recurrence after radical prostatectomy and before salvage radiotherapy[J]. Actas Urol Esp, 2022, 46(7): 397-406. DOI: 10.1016/j.acuroe.2021.12.011.
[17]
LUCARELLI N M, VILLANOVA I, MAGGIALETTI N, et al. Quantitative ADC: an additional tool in the evaluation of prostate cancer?[J/OL]. J Pers Med, 2023, 13(9): 1378 [2023-10-21]. https://pubmed.ncbi.nlm.nih.gov/37763146/. DOI: 10.3390/jpm13091378.
[18]
ROEST C, KWEE T C, SAHA A, et al. AI-assisted biparametric MRI surveillance of prostate cancer: feasibility study[J]. Eur Radiol, 2023, 33(1): 89-96. DOI: 10.1007/s00330-022-09032-7.
[19]
LIN J K, ZHONG Z P, CHEN Z Y, et al. Evaluation of the diagnostic performance of PI-RADS v2.1 combined with ADC value in prostate transitional zone cancer[J]. Chin Comput Med Imag, 2022, 28(5): 510-516. DOI: 10.3969/j.issn.1006-5741.2022.05.013.
[20]
WU X, REINIKAINEN P, VANHANEN A, et al. Correlation between apparent diffusion coefficient value on diffusion-weighted MR imaging and Gleason score in prostate cancer[J]. Diagn Interv Imaging, 2017, 98(1): 63-71. DOI: 10.1016/j.diii.2016.08.009.
[21]
PARK S Y, OH Y T, JUNG D C, et al. Diffusion-weighted imaging predicts upgrading of Gleason score in biopsy-proven low grade prostate cancers[J]. BJU Int, 2017, 119(1): 57-66. DOI: 10.1111/bju.13436.
[22]
MURAKAMI R, HIRAI T, SUGAHARA T, et al. Grading astrocytic tumors by using apparent diffusion coefficient parameters: superiority of a one-versus two-parameter pilot method[J]. Radiology, 2009, 251(3): 838-845. DOI: 10.1148/radiol.2513080899.
[23]
SHEN Y Q, LV F J, XIAO Z B, et al. Utility of the relative apparent diffusion coefficient for preoperative assessment of low risk endometrial carcinoma[J]. Clin Imaging, 2019, 56: 28-32. DOI: 10.1016/j.clinimag.2019.03.001.
[24]
SCIALPI M, MARTORANA E, SCIALPI P, et al. S-PI-RADS and PI-RRADS for biparametric MRI in the detection of prostate cancer and post-treatment local recurrence[J]. Anticancer Res, 2023, 43(1): 297-303. DOI: 10.21873/anticanres.16163.
[25]
TAMADA T, UEDA Y, UENO Y, et al. Diffusion-weighted imaging in prostate cancer[J]. Magma, 2022, 35(4): 533-547. DOI: 10.1007/s10334-021-00957-6.
[26]
YUAN J, POON D M C, LO G, et al. A narrative review of MRI acquisition for MR-guided-radiotherapy in prostate cancer[J]. Quant Imaging Med Surg, 2022, 12(2): 1585-1607. DOI: 10.21037/qims-21-697.
[27]
MALAYERI A A, KHOULI R H EL, ZAHEER A, et al. Principles and applications of diffusion-weighted imaging in cancer detection, staging, and treatment follow-up[J]. Radiographics, 2011, 31(6): 1773-1791. DOI: 10.1148/rg.316115515.
[28]
FANG L, FANG H, JIN L, et al. The value of apparent diffusion coefficient minimum in differential diagnosis of early prostate cancer and chronic prostatitis in peripheral zone[J]. Chin J Magn Reson Imag, 2023, 14(7): 93-97. DOI: 10.12015/issn.1674-8034.2023.07.016.
[29]
YI N, WANG Y J, WANG P, et al. Application of MRI apparent diffusion coefficient in identifying prognostic risk stratification of prostate cancer[J]. Chin J Magn Reson Imag, 2022, 13(12): 104-110. DOI: 10.12015/issn.1674-8034.2022.12.018.
[30]
TAMADA T, SONE T, TOSHIMITSU S, et al. Age-related and zonal anatomical changes of apparent diffusion coefficient values in normal human prostatic tissues[J]. J Magn Reson Imaging, 2008, 27(3): 552-556. DOI: 10.1002/jmri.21117.
[31]
BAMMER R. Basic principles of diffusion-weighted imaging[J]. Eur J Radiol, 2003, 45(3): 169-184. DOI: 10.1016/s0720-048x(02)00303-0.
[32]
LIM H K, KIM J K, KIM K A, et al. Prostate cancer: apparent diffusion coefficient map with T2-weighted images for detection: a multireader study[J]. Radiology, 2009, 250(1): 145-151. DOI: 10.1148/radiol.2501080207.
[33]
LI S, WANG K X, LI J L, et al. AI-predicted mpMRI image features for the prediction of clinically significant prostate cancer[J]. Int Urol Nephrol, 2023, 55(11): 2703-2715. DOI: 10.1007/s11255-023-03722-x.
[34]
KIM M J, PARK S Y. Biparametric magnetic resonance imaging-derived nomogram to detect clinically significant prostate cancer by targeted biopsy for index lesion[J]. J Magn Reson Imaging, 2022, 55(4): 1226-1233. DOI: 10.1002/jmri.27841.
[35]
WARNDAHL B A, BORISCH E A, KAWASHIMA A, et al. Conventional vs. reduced field of view diffusion weighted imaging of the prostate: comparison of image quality, correlation with histology, and inter-reader agreement[J]. Magn Reson Imaging, 2018, 47: 67-76. DOI: 10.1016/j.mri.2017.10.011.
[36]
SUROV A, MEYER H J, WIENKE A. Correlations between apparent diffusion coefficient and gleason score in prostate cancer: a systematic review[J]. Eur Urol Oncol, 2020, 3(4): 489-497. DOI: 10.1016/j.euo.2018.12.006.
[37]
LEBOVICI A, SFRANGEU S A, FEIER, et al. Evaluation of the normal-to-diseased apparent diffusion coefficient ratio as an indicator of prostate cancer aggressiveness[J/OL]. BMC Med Imaging, 2014, 14: 15 [2023-10-21]. https://pubmed.ncbi.nlm.nih.gov/24885552/. DOI: 10.1186/1471-2342-14-15.

PREV Study on the detection efficiency of 18F-PSMA-1007 PET/CT and mp-MRI in prostate cancer and its correlation with pathological grade
NEXT To analyze the value of radiomics based on different diffusion model parameter maps in the early diagnosis of clinically significant prostate cancer by magnetic resonance imaging
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn