Share:
Share this content in WeChat
X
Clinical Article
Evaluation of the value of DWI combined with T2 mapping sequences to identify prostate cancer and benign prostatic hyperplasia
LI Xiwei  CHEN Lihua  WANG Nan  LIN Liangjie  LIU Ailian 

Cite this article as: LI X W, CHEN L H, WANG N, et al. Evaluation of the value of DWI combined with T2 mapping sequences to identify prostate cancer and benign prostatic hyperplasia[J]. Chin J Magn Reson Imaging, 2024, 15(2): 97-102. DOI:10.12015/issn.1674-8034.2024.02.014.


[Abstract] Objective The efficacy of combining diffusion weighted imaging (DWI) with T2 mapping sequences in differentiating prostate cancer (PCa) and benign prostatic hyperplasia (BPH).Materials and Methods We conducted a retrospective analysis of data from 56 patients diagnosed with PCa and 40 patients with BPH, who underwent 3.0 T MRI examinations at our hospital and received pathological confirmation. The scanning sequences included T1WI, T2WI, DWI and T2 mapping sequences. Two observers independently measured the apparent diffusion coefficient (ADC) values and T2 values of the lesions in both groups. The intra-class correlation coefficient (ICC) was used to assess inter-observer agreement. Differences in ADC values and T2 values between the two groups were analyzed using independent samples t-test or Mann-Whitney U test. Logistic regression was employed to create diagnostic models using discrepant parameters and baseline information. ROC curves were constructed to evaluate the diagnostic efficacy of the differentiated parameters and the joint model. The DeLong test was used to compare differences in the area under the ROC curve (AUC). Spearman's correlation coefficient was calculated to assess the correlation between ADC values and T2 values.Results Excellent agreement was observed between the measurements of the two observers (ICC>0.75). The PCa group exhibited significantly lower ADC and T2 values compared to the BPH group (P<0.01). The AUC values for ADC, T2, ADC-T2 joint model, and ADC-T2-age-total prostate specific antigen (TPSA) joint model in distinguishing PCa from BPH were 0.843, 0.830, 0.896 and 0.927. DeLong's test showed statistically significant differences in the ROC curves for ADC and ADC-T2 jointly and for ADC, T2, ADC-T2 model and ADC-T2-age-TPSA joint model (P< 0.05). ADC values were positively correlated with T2 values (r=0.331, P<0.01).Conclusions DWI and T2 mapping hold substantial value in differentiating between PCa and BPH. The diagnostic efficacy improves when combining these sequences with clinical indicators such as age and TPSA. This combined imaging approach offers promising non-invasive diagnostic guidance for PCa and BPH in clinical settings.
[Keywords] prostate cancer;prostatic hyperplasia;diffusion-weighted imaging;T2 mapping imaging;magnetic resonance imaging;differential diagnosis

LI Xiwei1, 2   CHEN Lihua1, 2   WANG Nan1, 2   LIN Liangjie3   LIU Ailian1, 2*  

1 Department of Radiology, the First Hospital of Dalian Medical University, Dalian 116011, China

2 Dalian Medical Imaging Artificial Intelligence Technology Research Center, Dalian 116011, China

3 Philips (China) Investment Co., LTD, Beijing Branch, Beijing 100016, China

Corresponding author: LIU A L, E-mail: liuailian@dmu.edu.cn

Conflicts of interest   None.

Received  2023-09-11
Accepted  2024-01-24
DOI: 10.12015/issn.1674-8034.2024.02.014
Cite this article as: LI X W, CHEN L H, WANG N, et al. Evaluation of the value of DWI combined with T2 mapping sequences to identify prostate cancer and benign prostatic hyperplasia[J]. Chin J Magn Reson Imaging, 2024, 15(2): 97-102. DOI:10.12015/issn.1674-8034.2024.02.014.

[1]
ZHANG Y Q, HUANG S X, CHEN Q, et al. Differential value of susceptibility weighted imaging in prostate cancer and prostatic hyperplasia[J]. Fujian Med J, 2021, 43(1): 33-36. DOI: 10.3969/j.issn.1002-2600.2021.01.012.
[2]
BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA a Cancer J Clin, 2018, 68(6): 394-424. DOI: 10.3322/caac.21492.
[3]
JEMAL A, BRAY F, CENTER M M, et al. Global cancer statistics[J]. CA Cancer J Clin, 2011, 61(2): 69-90. DOI: 10.3322/caac.20107.
[4]
RAWLA P. Epidemiology of prostate cancer[J]. World J Oncol, 2019, 10(2): 63-89. DOI: 10.14740/wjon1191.
[5]
INGOLE S M, MEHTA R U, KAZI Z N, et al. Multiparametric magnetic resonance imaging in evaluation of clinically significant prostate cancer[J]. Indian J Radiol Imaging, 2021, 31(1): 65-77. DOI: 10.1055/s-0041-1730093.
[6]
HE Y N, LIU H M. Enhancement patterns in contrast-enhanced transrectal ultrasonography of prostate diseases[J]. Chin J Med Imag Technol, 2019, 35(6): 954-956. DOI: 10.13929/j.1003-3289.201807175.
[7]
CATALONA W J, SMITH D S, RATLIFF T L, et al. Measurement of prostate-specific antigen in serum as a screening test for prostate cancer[J]. N Engl J Med, 1991, 324(17): 1156-1161. DOI: 10.1056/NEJM199104253241702.
[8]
NIAN X W, REN S C, XU C L, et al. Research progress of markers in early diagnosis of prostate cancer[J]. J Clin Urol, 2016, 31(9): 852-856. DOI: 10.13201/j.issn.1001-1420.2016.09.021.
[9]
LOJANAPIWAT B, ANUTRAKULCHAI W, CHONGRUKSUT W, et al. Correlation and diagnostic performance of the prostate-specific antigen level with the diagnosis, aggressiveness, and bone metastasis of prostate cancer in clinical practice[J]. Prostate Int, 2014, 2(3): 133-139. DOI: 10.12954/PI.14054.
[10]
LI B, CAI W C, LV D J, et al. Comparison of MRS and DWI in the diagnosis of prostate cancer based on sextant analysis[J]. J Magn Reson Imaging, 2013, 37(1): 194-200. DOI: 10.1002/jmri.23809.
[11]
ZHU X, MA Y, PAN C J. Diagnostic value of quantitative T2 mapping and T2*mapping in prostatic lesions[J]. J Dalian Med Univ, 2021, 43(5): 438-441. DOI: 10.11724/jdmu.2021.05.11.
[12]
RAO X H. Evaluation of the application value of 3.0T MRI in the diagnosis of prostate cancer and benign prostatic hyperplasia. Imaging Research and Medical Applications[J], 2021, 5(16):177-178. DOI: 10.3969/j.issn.2096-3807.2021.16.083.
[13]
ZENG J, YIN L L. Ultra-high b value diffusion-weighted imaging and intravoxel incoherent motion imaging in diagnosis of prostatic neoplasms[J]. Chin J Med Imag Technol, 2020, 36(8): 1220-1224. DOI: 10.13929/j.issn.1003-3289.2020.08.024.
[14]
ZHAN H G, LI Y M. Differential analysis of dynamic contrast-enhanced MRI combined with DWI in benign prostatic hyperplasia and prostate cancer[J]. Henan Med Res, 2021, 30(24): 4543-4546. DOI: 10.3969/j.issn.1004-437X.2021.24.040.
[15]
ZHANG W, ZHANG W T, LI X, et al. Predicting tumor perineural invasion status in high-grade prostate cancer based on a clinical-radiomics model incorporating T2-weighted and diffusion-weighted magnetic resonance images[J/OL]. Cancers, 2022, 15(1): 86 [2024-01-23]. https://pubmed.ncbi.nlm.nih.gov//3661208. DOI: 10.3390/cancers15010086.
[16]
LI S J, ZHANG Z X, LIU J, et al. The value of T2 mapping for evaluating the pathological type, grade and depth of myometrial invasion in endometrial carcinoma[J]. Zhonghua Zhong Liu Za Zhi, 2023, 45(8): 673-680. DOI: 10.3760/cma.j.cn112152-20220124-00055.
[17]
ZHU L H, LIU H, ZHOU J J. Research progress of magnetic resonance T2-mapping in body malignant tumors[J]. Chin J Magn Reson Imag, 2020, 11(5): 398-400. DOI: 10.12015/issn.1674-8034.2020.05.019.
[18]
LIANG J Y, WANG Y Z, LEI Q, et al. Preliminary study of T2 value in the diagnosis of central gland prostate cancer and benign prostatic hyperplasia[J]. J Pract Radiol, 2019, 35(9): 1464-1467. DOI: 10.3969/j.issn.1002-1671.2019.09.021.
[19]
HU W J, LIU A L, CHEN L H, et al. The value of amide proton transfer imaging combined with T2-mapping for differentiating prostate cancer from benign prostatic hyperplasia[J]. Radiol Pract, 2022, 37(11): 1416-1421. DOI: 10.13609/j.cnki.1000-0313.2022.11.015.
[20]
MAZZONI L N, LUCARINI S, CHITI S, et al. Diffusion-weighted signal models in healthy and cancerous peripheral prostate tissues: comparison of outcomes obtained at different b-values[J]. J Magn Reson Imaging, 2014, 39(3): 512-518. DOI: 10.1002/jmri.24184.
[21]
ZHU G B, LUO J W, DENG Y, et al. Diagnostic value of quantitative analysis of ADC value and DCE-MRI parameters for prostate cancer[J]. Chin Comput Med Imag, 2021, 27(4): 308-312. DOI: 10.19627/j.cnki.cn31-1700/th.2021.04.006.
[22]
WU H, WU J, YU N, et al. The value of mono-exponential, bi-exponential and stretched exponential DWI models in identifying prostate cancer and stromal prostate hyperplasia[J]. Chin J Magn Reson Imag, 2020, 11(7): 546-551. DOI: 10.12015/issn.1674-8034.2020.07.014.
[23]
SABOURI S, CHANG S D, SAVDIE R, et al. Luminal water imaging: a new MR imaging T2 mapping technique for prostate cancer diagnosis[J]. Radiology, 2017, 284(2): 451-459. DOI: 10.1148/radiol.2017161687.
[24]
MOU J, WANG D, LIU X F, et al. The application value of T2-mapping sequence of cardiovascular magnetic resonance imaging to monitor myocardial inflammation in acute myocarditis[J]. Radiol Pract, 2020, 35(11): 1424-1428. DOI: 10.13609/j.cnki.1000-0313.2020.11.011.
[25]
REGATTE R R, AKELLA S V, LONNER J H, et al. T1rho relaxation mapping in human osteoarthritis (OA) cartilage: comparison of T1rho with T2[J]. J Magn Reson Imaging, 2006, 23(4): 547-553. DOI: 10.1002/jmri.20536.
[26]
MA C J, LIU A L, TIAN S F, et al. Preliminary study of APT combined with T2 mapping sequence in preoperative risk assessment of endometrial carcinoma[J]. Chin J Magn Reson Imag, 2021, 12(9): 69-72. DOI: 10.12015/issn.1674-8034.2021.09.016.
[27]
DONG W, CHEN A L, LIU A L, et al. Comparation of amide proton transfer-weighted and T2 mapping in quantifying rectal cancer with and without chemotherapy: a preliminary study[J]. Chin J Magn Reson Imag, 2021, 12(7): 24-28. DOI: 10.12015/issn.1674-8034.2021.07.005.
[28]
KLINGEBIEL M, SCHIMMÖLLER L, WEILAND E, et al. Value of T2 mapping MRI for prostate cancer detection and classification[J]. J Magn Reson Imaging, 2022, 56(2): 413-422. DOI: 10.1002/jmri.28061.
[29]
SØRLAND K I, SUNOQROT M R S, SANDSMARK E, et al. Pseudo-T2 mapping for normalization of T2-weighted prostate MRI[J]. MAGMA, 2022, 35(4): 573-585. DOI: 10.1007/s10334-022-01003-9.
[30]
HEPP T, KALMBACH L, KOLB M, et al. T2 mapping for the characterization of prostate lesions[J]. World J Urol, 2022, 40(6): 1455-1461. DOI: 10.1007/s00345-022-03991-8.

PREV The utility of deep learning-clinical combined model based on bi-parametric MRI for diagnosis of clinically significant prostate cancer
NEXT Predicting the occurrence of knee osteoarthritis based on MRI meniscus 3D convolutional neural network model
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn