Share:
Share this content in WeChat
X
Original Article
Processing of Chinese linguistic and prosodic signals in dichotic listening conditions: A fMRI study
XU Ziwei  MO Yin  SHI Yaoping  CAI Xirui 

Cite this article as: XU Z W, MO Y, SHI Y P, et al. Processing of Chinese linguistic and prosodic signals in dichotic listening conditions: A fMRI study[J]. Chin J Magn Reson Imaging, 2024, 15(2): 115-121. DOI:10.12015/issn.1674-8034.2024.02.017.


[Abstract] Objective This study aims to investigate the brain activation areas and lateralization patterns of native Chinese speakers processing auditory language signals in dichotic listening conditions. It utilizes the low-pass filtering method and dichotic listening technique to derive neural processing models through functional magnetic resonance imaging (fMRI).Materials and Methods Thirty participants (age 25.36±0.88 years, native Chinese speakers, and strongly right-handed) participated in the study from January to May 2022 in the First Affiliated Hospital of Kunming Medical University. Chinese short sentences were low-pass filtered (<320 Hz), retaining only low-frequency prosodic information. Auditory signals were presented in two dichotic listening conditions: filtered in the left ear and unfiltered in the right ear (FL), and filtered in the right ear and unfiltered in the left ear (FR). Participants alternately listened to two groups of signals, while two sessions of block-design fMRI scanning were conducted. After preprocessing the image data using SPM 12 software, one-sample t-tests within the group and two-sample t-tests between the groups were performed to identify similarities and differences in the distribution and intensity of brain activation areas during signal processing. Regions of interest (ROIs) were identified based on the one-sample t-tests, and the lateralization indices of the ROIs were then calculated to determine lateralization patterns.Results Both signal groups activated the bilateral middle temporal, superior temporal, inferior frontal, the left precentral, and the right middle frontal gyri (P<0.05, FDR-corrected). Additionally, FL signals led to increased blood oxygen levels in the left frontal gyrus (P<0.05, FDR-corrected), and FR signals activated the bilateral inferior parietal lobule (P<0.05, FDR-corrected). Two-sample t-tests revealed significant differences in the right middle temporal gyrus and superior temporal gyrus in the contrast of FR vs. FL (P<0.05, FDR-corrected). No significant difference was observed in the contrast of FL vs. FR. Lateralization indices indicated no clear lateralization patterns at the hemispheric level for both signal groups. However, both groups exhibited right-lateralized activity in the middle frontal gyrus and left asymmetry in the precentral gyrus. Furthermore, the FR signal induced left-lateralized activation in the inferior parietal lobule.Conclusions Processing Chinese auditory signals in dichotic listening conditions involves a speech processing model comprising the bilateral middle and superior temporal, inferior frontal gyri, and the right middle frontal gyrus. The dichotic FR signal not only activated language-relevant brain regions but also recruited additional regions for speech perception and cognitive control compared to FL. Conversely, FL appeared to reduce the load of phonological processing in the right middle and superior temporal gyri, aligning with left and right hemispheric specialization for linguistic and prosodic processing.
[Keywords] auditory language signals;low-pass filtering;prosody;dichotic listening;functional magnetic resonance imaging of the brain;magnetic resonance imaging

XU Ziwei1   MO Yin1*   SHI Yaoping2   CAI Xirui3*  

1 Department of Medical Imaging, the First Affiliated Hospital of Kunming Medical University, Kunming 650000, China

2 Department of Medical Imaging, First People's Hospital of Changde, Changde 415000, China

3 Department of Foreign Languages, Kunming Medical University, Kunming 650500, China

Corresponding author: MO Y, E-mail: 13888905910@163.com CAI X R, E-mail: tsai_hsijui@hotmail.com

Conflicts of interest   None.

Received  2023-04-25
Accepted  2024-01-21
DOI: 10.12015/issn.1674-8034.2024.02.017
Cite this article as: XU Z W, MO Y, SHI Y P, et al. Processing of Chinese linguistic and prosodic signals in dichotic listening conditions: A fMRI study[J]. Chin J Magn Reson Imaging, 2024, 15(2): 115-121. DOI:10.12015/issn.1674-8034.2024.02.017.

[1]
HOMAE F, WATANABE H, NAKANO T, et al. The right hemisphere of sleeping infant perceives sentential prosody[J]. Neurosci Res, 2006, 54(4): 276-280. DOI: 10.1016/j.neures.2005.12.006.
[2]
GUBERINA P, ASP C. The Verbotonal Method[M]. Zagreb: Artresor Naklada, 2013.
[3]
GUBERINA P, ASP C. The verbo-tonal method for rehabilitating people with communication problems[M]. New York: World Rehabilitation Fund, 1981.
[4]
CAI X R, LIAN A, PUAKPONG N, et al. Optimizing auditory input for foreign language learners through a verbotonal-based dichotic listening approach[J/OL]. Asian Pac J Second Foreign Lang Educ, 2021, 6(1): 14 [2023-04-24]. https://sfleducation.springeropen.com/articles/10.1186/s40862-021-00119-0. DOI: 10.1186/s40862-021-00119-0.
[5]
LUU V T M, LIAN A. Promoting EFL learners' listening fluency through web-based prosody-focused practice[J]. Tạp Chí Khoa Học Xã Hội Và Nhân Văn VNU J Soc Sci Humanit, 2022, 8(2): 234-252. DOI: 10.33100/tckhxhnv8.2.luuthimaivy-andrewlian.
[6]
LUU V T M. Developing EFL learners' listening comprehension through a computer-assisted self-regulated prosody-based listening platform[J]. CALL-Electronic Journal, 2021, 22(1): 246-263. DOI: 10.1109/s.2021.22.00246.
[7]
SHI Y P, CAI X R, XU Z W, et al. An fMRI study on the processing of Chinese auditory language signals and prosodic signals[J]. J Clin Radiol, 2022, 41(7): 1227-1233.
[8]
OBUCHI C, KAWASE T, KAGA K, et al. Auditory attention ability under dichotic dual-task situation in adults with listening difficulties[J]. Audiol Neurootol, 2023, 28(3): 175-182. DOI: 10.1159/000528050.
[9]
GANDOUR J, XU Y S, WONG D, et al. Neural correlates of segmental and tonal information in speech perception[J]. Hum Brain Mapp, 2003, 20(4): 185-200. DOI: 10.1002/hbm.10137.
[10]
LIAN A, CAI X R, CHEN H Q, et al. Cerebral lateralization induced by dichotic listening to filtered and unfiltered stimuli: optimizing auditory input for foreign language learners[J]. JCR, 2020, 7(19): 4608-4625. DOI: ISSN-2394-5125.
[11]
MIHAI P G, TSCHENTSCHER N, VON KRIEGSTEIN K. Modulation of the primary auditory thalamus when recognizing speech with background noise[J]. J Neurosci, 2021, 41(33): 7136-7147. DOI: 10.1523/JNEUROSCI.2902-20.2021.
[12]
THAKKAR I, ARRAÑO-CARRASCO L, CORTES-RIVERA B, et al. Alternative language paradigms for functional magnetic resonance imaging as presurgical tools for inducing crossed cerebro-cerebellar language activations in brain tumor patients[J]. Eur Radiol, 2022, 32(1): 300-307. DOI: 10.1007/s00330-021-08137-9.
[13]
LEE D J, POURATIAN N, BOOKHEIMER S Y, et al. Factors predicting language lateralization in patients with perisylvian vascular malformations. Clinical article[J]. J Neurosurg, 2010, 113(4): 723-730. DOI: 10.3171/2010.2.JNS091595.
[14]
ARNOTT S R, ALAIN C. The auditory dorsal pathway: orienting vision[J]. Neurosci Biobehav Rev, 2011, 35(10): 2162-2173. DOI: 10.1016/j.neubiorev.2011.04.005.
[15]
ZHANG Q, WANG H, LUO C M, et al. The neural basis of semantic cognition in Mandarin Chinese: a combined fMRI and TMS study[J]. Hum Brain Mapp, 2019, 40(18): 5412-5423. DOI: 10.1002/hbm.24781.
[16]
VAN ETTINGER-VEENSTRA H, RAGNEHED M, MCALLISTER A, et al. Right-hemispheric cortical contributions to language ability in healthy adults[J]. Brain Lang, 2012, 120(3): 395-400. DOI: 10.1016/j.bandl.2011.10.002.
[17]
GANDOUR J, TONG Y X, TALAVAGE T, et al. Neural basis of first and second language processing of sentence-level linguistic prosody[J]. Hum Brain Mapp, 2007, 28(2): 94-108. DOI: 10.1002/hbm.20255.
[18]
UTTAL W R. Mind and brain: a critical appraisal of cognitive neuroscience[M]. MIT Press, 2011.
[19]
MCGILCHRIST I. Introduction: the master and his emissary[M]. Yale University Press, 2019.
[20]
LIANG B S, DU Y. The functional neuroanatomy of lexical tone perception: an activation likelihood estimation meta-analysis[J/OL]. Front Neurosci, 2018, 12: 495 [2023-04-24]. https://pubmed.ncbi.nlm.nih.gov/30087589/. DOI: 10.3389/fnins.2018.00495.
[21]
WANG M L, DU L, WANG H, et al. Research progress of magnetic resonance diffusion tensor imaging in auditory conduction pathway of patients with sensorineural hearing loss[J]. J Audiol Speech Pathol, 2018, 26(3): 325-328. DOI: 10.3969/j.issn.1006-7299.2018.03.024.
[22]
HICKOK G, POEPPEL D. The cortical organization of speech processing[J]. Nat Rev Neurosci, 2007, 8(5): 393-402. DOI: 10.1038/nrn2113.
[23]
RAUSCHECKER J P, SCOTT S K. Maps and streams in the auditory cortex: nonhuman Primates illuminate human speech processing[J]. Nat Neurosci, 2009, 12(6): 718-724. DOI: 10.1038/nn.2331.
[24]
HUMPHRIES C, SABRI M, LEWIS K, et al. Hierarchical organization of speech perception in human auditory cortex[J/OL]. Front Neurosci, 2014, 8: 406 [2023-04-24]. https://pubmed.ncbi.nlm.nih.gov/25565939/. DOI: 10.3389/fnins.2014.00406.
[25]
YAMAMOTO A K, PARKER JONES O, HOPE T M H, et al. A special role for the right posterior superior temporal sulcus during speech production[J/OL]. Neuroimage, 2019, 203: 116184 [2023-04-24]. https://pubmed.ncbi.nlm.nih.gov/31520744/. DOI: 10.1016/j.neuroimage.2019.116184.
[26]
LIU L, PENG D L, DING G S, et al. Dissociation in the neural basis underlying Chinese tone and vowel production[J]. Neuroimage, 2006, 29(2): 515-523. DOI: 10.1016/j.neuroimage.2005.07.046.
[27]
MA L Y, LIU G Y, ZHANG P F, et al. Advances of fMRI in human brain language[J]. Chin J Magn Reson Imag, 2021, 12(4): 89-92. DOI: 10.12015/issn.1674-8034.2021.04.022.
[28]
LIDZBA K, SCHWILLING E, GRODD W, et al. Language comprehension vs. language production: age effects on fMRI activation[J]. Brain Lang, 2011, 119(1): 6-15. DOI: 10.1016/j.bandl.2011.02.003.
[29]
FRIEDERICI A D, ALTER K. Lateralization of auditory language functions: a dynamic dual pathway model[J]. Brain Lang, 2004, 89(2): 267-276. DOI: 10.1016/S0093-934X(03)00351-1.
[30]
WONG P C. Hemispheric specialization of linguistic pitch patterns[J]. Brain Res Bull, 2002, 59(2): 83-95. DOI: 10.1016/s0361-9230(02)00860-2.

PREV Research on the recognition of brain functional connections in flight students based on multivariate pattern analysis
NEXT Experimental study of magnetic resonance targeted myelin probe Gd-DTDAS in multiple sclerotic rat myelin injury model
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn