Share:
Share this content in WeChat
X
Technical Article
Application value of VMHC and ReHo in evaluating tDCS in improving cognitive impairment after stroke
ZHONG Jiali  JING Xiaoshan  LIANG Ying 

Cite this article as: ZHONG J L, JING X S, LIANG Y. Application value of VMHC and ReHo in evaluating tDCS in improving cognitive impairment after stroke[J]. Chin J Magn Reson Imaging, 2024, 15(2): 129-134. DOI:10.12015/issn.1674-8034.2024.02.019.


[Abstract] Objective Exploring the application value of voxel-mirror homotopic connectivity (VMHC) and regional homogeneity (ReHo) in evaluating transcranial direct current stimulation (tDCS) in improving cognitive impairment after stroke.Materials and Methods A total of 47 patients with post-stroke cognitive impairment (PSCI) were prospectively included and randomly assigned to the tDCS group and sham stimulation group. Among them, 23 patients were in the tDCS group and 24 patients were in the sham stimulation group. Use Mann Whitney U-test to compare the differences in cognitive scale scores between two groups of patients at baseline and 15 days after tDCS or sham stimulation treatment. Use paired t-test to compare the differences in VMHC and ReHo result between two groups of patients at baseline and 15 days after tDCS or sham stimulation treatment. Collect and extract VMHC and ReHo values of different brain regions for correlation analysis with changes in scale scores before and after treatment.Results The Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA) scores of the tDCS group and the sham stimulation group after treatment were better than before treatment, but the tDCS group had better treatment effect. After treatment, the MMSE and MoCA scores improved significantly compared to before treatment, with a statistically significant difference (P<0.05); VMHC results: After treatment, the VMHC values in the bilateral insula and anterior cuneiform lobes of patients in the tDCS group increased (P<0.05, FDR correction), while the VMHC values in the bilateral superior occipital gyrus of patients in the sham stimulation group increased (P<0.05, FDR correction); ReHo results: After treatment, the ReHo values in the anterior cingulate gyrus and inferior parietal angular gyrus of patients in the tDCS group increased (P<0.05, FDR correction), while there was no significant difference in brain regions between the sham stimulation group and before treatment; Correlation analysis: After treatment, the increase in VMHC in the bilateral anterior cuneiform lobes of patients in the tDCS group showed a positive correlation with changes in MMSE and MoCA scales; MMSE (r=0.47, P=0.02); MoCA (r=0.43, P=0.04), while there was no significant correlation between other brain regions and changes in MMSE and MoCA scales.Conclusions The cognitive rehabilitation effect of tDCS combined with conventional rehabilitation treatment on PSCI patients is better than that of conventional rehabilitation treatment alone. The application of VMHC and ReHo found that the treatment mechanism of tDCS may be related to improving the functional connectivity and spontaneous activity of some brain regions between the bilateral hemispheres in the default mode network (DMN) and salience network (SN).
[Keywords] stroke;cerebral infarction;post stroke cognitive impairment;resting state;voxel-mirror homotopic connectivity;regional homogeneity;magnetic resonance imaging

ZHONG Jiali1   JING Xiaoshan2   LIANG Ying1*  

1 Department of Biomedical Engineering, Capital Medical University, Beijing 100069, China

2 Department of Rehabilitation, Beijing LuHe Hospital, Capital Medical University, Beijing 101149, China

Corresponding author: LIANG Y, E-mail: yingliang@ccmu.edu.cn

Conflicts of interest   None.

Received  2023-09-01
Accepted  2024-01-15
DOI: 10.12015/issn.1674-8034.2024.02.019
Cite this article as: ZHONG J L, JING X S, LIANG Y. Application value of VMHC and ReHo in evaluating tDCS in improving cognitive impairment after stroke[J]. Chin J Magn Reson Imaging, 2024, 15(2): 129-134. DOI:10.12015/issn.1674-8034.2024.02.019.

[1]
WANG Y J, LI Z X, GU H Q, et al. China Stroke Statistics: an update on the 2019 report from the National Center for Healthcare Quality Management in Neurological Diseases, China National Clinical Research Center for Neurological Diseases, the Chinese Stroke Association, National Center for Chronic and Non-communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention and Institute for Global Neuroscience and Stroke Collaborations[J]. Stroke Vasc Neurol, 2022, 7(5): 415-450. DOI: 10.1136/svn-2021-001374.
[2]
CROFTS A, KELLY M E, GIBSON C L. Imaging functional recovery following ischemic stroke: clinical and preclinical fMRI studies[J]. J Neuroimaging, 2020, 30(1): 5-14. DOI: 10.1111/jon.12668.
[3]
GREFKES C, FINK G R. Connectivity-based approaches in stroke and recovery of function[J]. Lancet Neurol, 2014, 13(2): 206-216. DOI: 10.1016/S1474-4422(13)70264-3.
[4]
ZHUO P Y, HUANG L H, LIN M R, et al. Efficacy and safety of acupuncture combined with rehabilitation training for poststroke cognitive impairment: a systematic review and meta-analysis[J/OL]. J Stroke Cerebrovasc Dis, 2023, 32(9): 107231 [2023-08-30]. https://pubmed.ncbi.nlm.nih.gov/37473532/. DOI: 10.1016/j.jstrokecerebrovasdis.2023.107231.
[5]
GANGARAM-PANDAY S G, ZHOU Y Y, GILLEBERT C R. Screening for post-stroke neurocognitive disorders in diverse populations: a systematic review[J/OL]. Clin Neuropsychol, 2023: 1-24 [2023-08-30]. https://pubmed.ncbi.nlm.nih.gov/37480233/. DOI: 10.1080/13854046.2023.2237676.
[6]
HUANG Y Y, CHEN S D, LENG X Y, et al. Post-stroke cognitive impairment: epidemiology, risk factors, and management[J]. J Alzheimers Dis, 2022, 86(3): 983-999. DOI: 10.3233/JAD-215644.
[7]
JOKINEN H, MELKAS S, YLIKOSKI R, et al. Post-stroke cognitive impairment is common even after successful clinical recovery[J]. Eur J Neurol, 2015, 22(9): 1288-1294. DOI: 10.1111/ene.12743.
[8]
ZHANG X X, BI X. Post-stroke cognitive impairment: a review focusing on molecular biomarkers[J]. J Mol Neurosci, 2020, 70(8): 1244-1254. DOI: 10.1007/s12031-020-01533-8.
[9]
VERGALLITO A, VAROLI E, PISONI A, et al. State-dependent effectiveness of cathodal transcranial direct current stimulation on cortical excitability[J/OL]. NeuroImage, 2023, 277: 120242 [2023-08-30]. https://pubmed.ncbi.nlm.nih.gov/37348625/. DOI: 10.1016/j.neuroimage.2023.120242.
[10]
BIKSON M, GROSSMAN P, THOMAS C, et al. Safety of transcranial direct current stimulation: evidence based update 2016[J]. Brain Stimul, 2016, 9(5): 641-661. DOI: 10.1016/j.brs.2016.06.004.
[11]
CHASE H W, BOUDEWYN M A, CARTER C S, et al. Transcranial direct current stimulation: a roadmap for research, from mechanism of action to clinical implementation[J]. Mol Psychiatry, 2020, 25(2): 397-407. DOI: 10.1038/s41380-019-0499-9.
[12]
SOLOMONS C D, SHANMUGASUNDARAM V. Transcranial direct current stimulation: a review of electrode characteristics and materials[J/OL]. Med Eng Phys, 2020, 85: 63-74 [2023-08-30]. https://pubmed.ncbi.nlm.nih.gov/33081965/. DOI: 10.1016/j.medengphy.2020.09.015.
[13]
FILMER H L, VARGHESE E, HAWKINS G E, et al. Improvements in attention and decision-making following combined behavioral training and brain stimulation[J]. Cereb Cortex, 2017, 27(7): 3675-3682. DOI: 10.1093/cercor/bhw189.
[14]
HOY K E, BAILEY N W, ARNOLD S L, et al. The effect of transcranial Direct Current Stimulation on gamma activity and working memory in schizophrenia[J]. Psychiatry Res, 2015, 228(2): 191-196. DOI: 10.1016/j.psychres.2015.04.032.
[15]
SMITH R C, BOULES S, MATTIUZ S, et al. Effects of transcranial direct current stimulation (tDCS) on cognition, symptoms, and smoking in schizophrenia: a randomized controlled study[J]. Schizophr Res, 2015, 168(1/2): 260-266. DOI: 10.1016/j.schres.2015.06.011.
[16]
KO M H, YOON J Y, JO Y J, et al. Home-based transcranial direct current stimulation to enhance cognition in stroke: randomized controlled trial[J]. Stroke, 2022, 53(10): 2992-3001. DOI: 10.1161/STROKEAHA.121.037629.
[17]
ALHARBI M F, ARMIJO-OLIVO S, KIM E S. Transcranial direct current stimulation (tDCS) to improve Naming ability in post-stroke aphasia: a critical review[J/OL]. Behav Brain Res, 2017, 332: 7-15 [2023-08-30]. https://pubmed.ncbi.nlm.nih.gov/28572057/. DOI: 10.1016/j.bbr.2017.05.050.
[18]
GONZÁLEZ-RODRIGUEZ B, SERRADELL-RIBÉ N, VIEJO-SOBERA R, et al. Transcranial direct current stimulation in neglect rehabilitation after stroke: a systematic review[J]. J Neurol, 2022, 269(12): 6310-6329. DOI: 10.1007/s00415-022-11338-x.
[19]
WANG Y, LIU W, CHEN J, et al. Comparative efficacy of different noninvasive brain stimulation therapies for recovery of global cognitive function, attention, memory, and executive function after stroke: a network meta-analysis of randomized controlled trials[J/OL]. Ther Adv Chronic Dis, 2023, 14: 20406223231168754 [2023-08-30]. https://pubmed.ncbi.nlm.nih.gov/37332390/. DOI: 10.1177/20406223231168754.
[20]
SMALLWOOD J, BERNHARDT B C, LEECH R, et al. The default mode network in cognition: a topographical perspective[J]. Nat Rev Neurosci, 2021, 22(8): 503-513. DOI: 10.1038/s41583-021-00474-4.
[21]
MENON V. 20 years of the default mode network: a review and synthesis[J]. Neuron, 2023, 111(16): 2469-2487. DOI: 10.1016/j.neuron.2023.04.023.
[22]
ZUO X N, KELLY C, DI MARTINO A, et al. Growing together and growing apart: regional and sex differences in the lifespan developmental trajectories of functional homotopy[J]. J Neurosci, 2010, 30(45): 15034-15043. DOI: 10.1523/JNEUROSCI.2612-10.2010.
[23]
ZANG Y F, JIANG T Z, LU Y L, et al. Regional homogeneity approach to fMRI data analysis[J]. NeuroImage, 2004, 22(1): 394-400. DOI: 10.1016/j.neuroimage.2003.12.030.
[24]
YAN C G, ZANG Y F. DPARSF: a MATLAB toolbox for "pipeline" data analysis of resting-state fMRI[J/OL]. Front Syst Neurosci, 2010, 4: 13 [2023-08-30]. https://pubmed.ncbi.nlm.nih.gov/20577591/. DOI: 10.3389/fnsys.2010.00013.
[25]
VILLAFAÑE J H, TAVEGGIA G, GALERI S, et al. Efficacy of short-term robot-assisted rehabilitation in patients with hand paralysis after stroke: a randomized clinical trial[J]. Hand, 2018, 13(1): 95-102. DOI: 10.1177/1558944717692096.
[26]
LI Z D, YANG L, QIU H J, et al. Comparative efficacy of 5 non-pharmacological therapies for adults with post-stroke cognitive impairment: a Bayesian network analysis based on 55 randomized controlled trials[J/OL]. Front Neurol, 2022, 13: 977518 [2023-08-30]. https://pubmed.ncbi.nlm.nih.gov/36247793/. DOI: 10.3389/fneur.2022.977518.
[27]
TULADHAR A M, SNAPHAAN L, SHUMSKAYA E, et al. Default mode network connectivity in stroke patients[J/OL]. PLoS One, 2013, 8(6): e66556 [2023-08-30]. https://pubmed.ncbi.nlm.nih.gov/23824302/. DOI: 10.1371/journal.pone.0066556.
[28]
DACOSTA-AGUAYO R, GRAÑA M, ITURRIA-MEDINA Y, et al. Impairment of functional integration of the default mode network correlates with cognitive outcome at three months after stroke[J]. Hum Brain Mapp, 2015, 36(2): 577-590. DOI: 10.1002/hbm.22648.
[29]
ZHU T T, LI L Y, SONG Y L, et al. Altered functional connectivity within default mode network in patients with transient ischemic attack: a resting-state functional magnetic resonance imaging study[J]. Cerebrovasc Dis, 2019, 48(1/2): 61-69. DOI: 10.1159/000502884.
[30]
YAO G Q, LI J, LIU S, et al. Alterations of functional connectivity in stroke patients with basal Ganglia damage and cognitive impairment[J/OL]. Front Neurol, 2020, 11: 980 [2023-08-30]. https://pubmed.ncbi.nlm.nih.gov/33013648/. DOI: 10.3389/fneur.2020.00980.
[31]
BORSOOK D, VEGGEBERG R, ERPELDING N, et al. The Insula: a "hub of activity" in migraine[J]. Neuroscientist, 2016, 22(6): 632-652. DOI: 10.1177/1073858415601369.
[32]
WEN Y, LIU B, WANG X C. Preliminary study of brain resting state functional magnetic resonance local consistency analysis in patients with mild cognitive impairment[J]. Chin J Magn Reson Imag, 2020, 11(4): 253-258. DOI: 10.12015/issn.1674-8034.2020.04.003.
[33]
WU P, ZHOU Y M, ZENG F, et al. Regional brain structural abnormality in ischemic stroke patients: a voxel-based morphometry study[J]. Neural Regen Res, 2016, 11(9): 1424-1430. DOI: 10.4103/1673-5374.191215.

PREV Experimental study of magnetic resonance targeted myelin probe Gd-DTDAS in multiple sclerotic rat myelin injury model
NEXT Application of artificial intelligence-assisted compressed sensing technology in brain 3D T2-FLAIR sequence acquisition and evaluation of white matter hyperintensity
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn