Share:
Share this content in WeChat
X
Technical Article
Diagnostic value of cardiac magnetic contrast-enhanced cine sequences in STEMI patients with microvascular obstruction
HU Yingying  GUO Yong  SUN Zheng  ZHAO Li  LIU Zhi  CHEN Nan  LU Jie 

Cite this article as: HU Y Y, GUO Y, SUN Z, et al. Diagnostic value of cardiac magnetic contrast-enhanced cine sequences in STEMI patients with microvascular obstruction[J]. Chin J Magn Reson Imaging, 2024, 15(2): 140-146. DOI:10.12015/issn.1674-8034.2024.02.021.


[Abstract] Objective Using magnetic resonance contrast enhancement-steady state free precession (CE-SSFP) cine sequence to detect ST-segment elevation myocardial infarction (STEMI) in elderly patients with microvascular obstruction (MVO). STEMI patients were evaluated for image quality and combined with sequence parameter analysis to further explore its diagnostic performance for MVO.Materials and Methods The clinical data of 50 patients with STEMI (STEMI group) from September 2016 to March 2023 were retrospectively analyzed. All patients underwented CE-SSFP cine sequence short axis, four chamber, and two chamber scans. The STEMI patient group was included according to the 2020 European Heart Journal guideline standards and healthy controls matched for gender and age were collected. Qualitative and quantitative image quality evaluation of the myocardium and blood pool were performed on the CE-SSFP sequence by two diagnostic radiologists. The independent sample t test was used to analyze the general information and imaging data between the STEMI group and the healthy control group. The diagnostic performance of CE-SSFP sequence for MVO was analyzed using receiver operating characteristic (ROC) curve.Results The CE-SSFP images of 48 patients (96%) in the STEMI group and 49 volunteers (98%) in the healthy control group could meet the diagnostic conditions; the contrast-to-noise ratio of the blood pool and myocardium in the STEMI group was significantly better than that in the healthy control group (222.9±15.6 vs. 170.1±14.9, t=4.631, P<0.05); the sensitivity of CE-SSFP to manually identify MVO was 91.38%, the specificity was 91.88%, and the Youden index was 0.833; the sensitivity of MVO was evaluated with 2 times the standard deviation. The specificity was 90.23%, the specificity was 89.94%, and the Youden index was 0.802. The areas under the curve for the two methods were 0.931 and 0.909 respectively.Conclusions The CE-SSFP sequence can quantitatively evaluate the image quality of patients with STEMI combined with MVO, provide effective indicators for quantitatively identifying MVO, and provide imaging basis for clinical diagnosis.
[Keywords] ST-segment elevation myocardial infarction;microvascular obstruction;cardiac magnetic resonance;contrast enhancement-steady state free precession;magnetic resonance imaging

HU Yingying1, 2   GUO Yong2   SUN Zheng1   ZHAO Li1   LIU Zhi3   CHEN Nan1*   LU Jie1  

1 Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China

2 Department of Radiology, Peking University International Hospital, Beijing 102206, China

3 Emergency Department, Xuanwu Hospital, Capital Medical University, Beijing 100053, China

Corresponding author: CHEN N, E-mail: chenzen8057@sina.com

Conflicts of interest   None.

Received  2023-09-06
Accepted  2024-01-30
DOI: 10.12015/issn.1674-8034.2024.02.021
Cite this article as: HU Y Y, GUO Y, SUN Z, et al. Diagnostic value of cardiac magnetic contrast-enhanced cine sequences in STEMI patients with microvascular obstruction[J]. Chin J Magn Reson Imaging, 2024, 15(2): 140-146. DOI:10.12015/issn.1674-8034.2024.02.021.

[1]
HE B, HAN Y L. Current situation of ST-segment elevation myocardial infarction rescue in China and optimal management strategies we can use today[J]. Chin J Cardiol, 2019, 47(2): 82-84. DOI: 10.3760/cma.j.issn.0253-3758.2019.02.002.
[2]
MONTONE R A, CAMILLI M, DEL BUONO M G, et al. No-reflow: update on diagnosis, pathophysiology and therapeutic strategies[J/OL]. G Ital Cardiol (Rome), 2020, 21(6Suppl 1): 4S-14S [2023-09-05]. https://pubmed.ncbi.nlm.nih.gov/32469339/. DOI: 10.1714/3373.33487.
[3]
DEL BUONO M G, MONTONE R A, CAMILLI M, et al. Coronary microvascular dysfunction across the spectrum of Cardiovascular Diseases: JACCState-of-the-art review[J]. J Am Coll Cardiol, 2021, 78(13): 1352-1371. DOI: 10.1016/j.jacc.2021.07.042.
[4]
GAO X Y, GUO C Y, WANG W, et al. Research progress on the mechanism and diagnostic methods of microvascular injury after myocardial ischemia-reperfusion[J]. Chin J Geriatr Heart Brain Vessel Dis, 2020, 22(11): 1218-1220. DOI: 10.3969/j.issn.1009-0126.2020.11.027.
[5]
YANG Q. Expert consensus on cardiovasular magnetic resonance imaging of China[J]. Chin J Med Imag Technol, 2019, 35(2): 161-169. DOI: 10.13929/j.1003-3289.201810056.
[6]
GONG Y J, HUO Y. 2019 Chinese Society of Cardiology (CSC) guidelines for the diagnosis and management of patients with ST? segment elevation myocardial infarction[J]. Chin J Cardiol, 2019, 47(10): 766-783. DOI: 10.3760/cma.j.issn.0253-3758.2019.10.003.
[7]
SHEN W F. Clinical management of acute ST-segment elevation myocardial infarction in China[J]. Cardio Cerebrovasc Dis Prev Treat, 2020, 20(1): 5-9. DOI: 10.3969/j.issn.1009-816x.2020.01.002.
[8]
SCARSINI R, SHANMUGANATHAN M, DE MARIA G L, et al. Coronary microvascular dysfunction assessed by pressure wire and CMR after STEMI predicts long-term outcomes[J]. JACC Cardiovasc Imaging, 2021, 14(10): 1948-1959. DOI: 10.1016/j.jcmg.2021.02.023.
[9]
HAMIRANI Y S, KRAMER C M. Cardiac MRI assessment of myocardial perfusion[J]. Future Cardiol, 2014, 10(3): 349-358. DOI: 10.2217/fca.14.18.
[10]
CHEN S, REDFORS B, CROWLEY A, et al. Relationship between primary percutaneous coronary intervention time of day, infarct size, microvascular obstruction and prognosis in ST-segment elevation myocardial infarction[J]. Coron Artery Dis, 2021, 32(4): 267-274. DOI: 10.1097/MCA.0000000000000990.
[11]
COLLET J P, THIELE H, BARBATO E, et al. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation[J]. Eur Heart J, 2021, 42(14): 1289-1367. DOI: 10.1093/eurheartj/ehaa575.
[12]
PAYNE A R, CASEY M, MCCLURE J, et al. Bright-blood T2-weighted MRI has higher diagnostic accuracy than dark-blood short tau inversion recovery MRI for detection of acute myocardial infarction and for assessment of the ischemic area at risk and myocardial salvage[J]. Circ Cardiovasc Imaging, 2011, 4(3): 210-219. DOI: 10.1161/CIRCIMAGING.110.960450.
[13]
PALMISANO A, BENEDETTI G, FALETTI R, et al. Early T1 myocardial MRI mapping: value in detecting myocardial hyperemia in acute myocarditis[J]. Radiology, 2020, 295(2): 316-325. DOI: 10.1148/radiol.2020191623.
[14]
BULLUCK H, WHITE S K, ROSMINI S, et al. T1 mapping and T2 mapping at 3T for quantifying the area-at-risk in reperfused STEMI patients[J/OL]. J Cardiovasc Magn Reson, 2015, 17(1): 73 [2023-09-05]. https://pubmed.ncbi.nlm.nih.gov/26264813/. DOI: 10.1186/s12968-015-0173-6.
[15]
KALI A, CHOI E Y, SHARIF B, et al. Native T1 mapping by 3-T CMR ImagingforCharacterization of chronic myocardial infarctions[J]. JACC Cardiovasc Imaging, 2015, 8(9): 1019-1030. DOI: 10.1016/j.jcmg.2015.04.018.
[16]
LIU T, WANG C F, WANG L L, et al. Development and validation of a clinical and laboratory-based nomogram for predicting coronary microvascular obstruction in NSTEMI patients after primary PCI[J]. Ther Clin Risk Manag, 2022, 18: 155-169. DOI: 10.2147/TCRM.S353199.
[17]
AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION TASK FORCE ON EXPERT CONSENSUS DOCUMENTS, HUNDLEY W G, BLUEMKE D A, et al. ACCF/ACR/AHA/NASCI/SCMR 2010 expert consensus document on cardiovascular magnetic resonance: a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents[J]. J Am Coll Cardiol, 2010, 55(23): 2614-2662. DOI: 10.1016/j.jacc.2009.11.011.
[18]
IBANEZ B, ALETRAS A H, ARAI A E, et al. Cardiac MRI endpoints in myocardial infarction experimental and clinical trials: JACC scientific expert panel[J]. J Am Coll Cardiol, 2019, 74(2): 238-256. DOI: 10.1016/j.jacc.2019.05.024.
[19]
SUN Z, HU Y Y, WU F, et al. Diagnostic efficacy of cardiovascular magnetic resonance T2-weighted sequence on edematous myocardium after acute myocardial infarction[J]. Chin Circ J, 2022, 37(1): 31-38. DOI: 10.3969/j.issn.1000-3614.2022.01.005.
[20]
REDFORS B, MOHEBI R, GIUSTINO G, et al. Time delay, infarct size, and microvascular obstruction after primary percutaneous coronary intervention for ST-segment-elevation myocardial infarction[J/OL]. Circ Cardiovasc Interv, 2021, 14(2): e009879 [2023-09-05]. https://pubmed.ncbi.nlm.nih.gov/33440999/. DOI: 10.1161/CIRCINTERVENTIONS.120.009879.
[21]
LIN C, CHEN Z X, XIANG X R, et al. Research progress of cardiac magnetic resonance in acute myocardial infarction[J]. Chin J Magn Reson Imag, 2021, 12(1): 106-108. DOI: 10.12015/issn.1674-8034.2021.01.025.
[22]
RUSH C J, BERRY C, OLDROYD K G, et al. Prevalence of coronary artery disease and coronary microvascular dysfunction in patients with heart failure with preserved ejection fraction[J]. JAMA Cardiol, 2021, 6(10): 1130-1143. DOI: 10.1001/jamacardio.2021.1825.
[23]
KUMAR A, CONNELLY K, VORA K, et al. The Canadian cardiovascular society classification of acute atherothrombotic myocardial infarction based on stages of tissue injury severity: an expert consensus statement[J]. Can J Cardiol, 2024, 40(1): 1-14. DOI: 10.1016/j.cjca.2023.09.020.
[24]
AHN S G, HUNG O Y, LEE J W, et al. Combination of the thermodilution-derived index of microcirculatory resistance and coronary flow reserve is highly predictive of microvascular obstruction on cardiac magnetic resonance imaging after ST-segment elevation myocardial infarction[J]. JACC Cardiovasc Interv, 2016, 9(8): 793-801. DOI: 10.1016/j.jcin.2015.12.025.
[25]
BULLUCK H, DHARMAKUMAR R, ARAI A E, et al. Cardiovascular magnetic resonance in acute ST-segment-elevation myocardial infarction: recent advances, controversies, and future directions[J]. Circulation, 2018, 137(18): 1949-1964. DOI: 10.1161/CIRCULATIONAHA.117.030693.
[26]
HANSEN E S S, PEDERSEN S F, PEDERSEN S B, et al. Validation of contrast enhanced cine steady-state free precession and T2-weighted CMR for assessment of ischemic myocardial area-at-risk in the presence of reperfusion injury[J]. Int J Cardiovasc Imaging, 2019, 35(6): 1039-1045. DOI: 10.1007/s10554-019-01569-x.
[27]
RAFF G L, O'NEILL W W, GENTRY R E, et al. Microvascular obstruction and myocardial function after acute myocardial infarction: assessment by using contrast-enhanced cine MR imaging[J]. Radiology, 2006, 240(2): 529-536. DOI: 10.1148/radiol.2402050369.
[28]
LAISSY J P, PEZEL T, HERBIN C, et al. Contrast-enhanced cine MR sequences in the assessment of myocardial hyperemia in acute myocarditis: can they help? A feasibility study[J]. Heart Vessels, 2023, 38(5): 662-670. DOI: 10.1007/s00380-022-02207-8.
[29]
GÖRANSSON C, AHTAROVSKI K A, KYHL K, et al. Assessment of the myocardial area at risk: comparing T2-weighted cardiovascular magnetic resonance imaging with contrast-enhanced cine (CE-SSFP) imaging-a DANAMI3 substudy[J]. Eur Heart J Cardiovasc Imaging, 2019, 20(3): 361-366. DOI: 10.1093/ehjci/jey106.
[30]
FLORÉ V, CLAUS P, VOS M A, et al. T-wave alternans is linked to microvascular obstruction and to recurrent coronary ischemia after myocardial infarction[J]. J Cardiovasc Transl Res, 2015, 8(8): 484-492. DOI: 10.1007/s12265-015-9649-x.
[31]
GUAN Y F, LIU J B, FAN L J, et al. Feasibility study of absolute phase one-beat scanning with wide-detector CT for patients with arrhythmia in coronary computed tomography angiography[J]. Radiol Pract, 2019, 34(5): 491-494. DOI: 10.13609/j.cnki.1000-0313.2019.05.003.
[32]
WANG F, CAO D R. Opportunities and challenges of non-contrast- enhanced magnetic resonance imaging: achievements and prospects over the past decade in China[J]. Chin J Magn Reson Imag, 2022, 13(10): 46-52, 60. DOI: 10.12015/issn.1674-8034.2022.10.006.

PREV Application of artificial intelligence-assisted compressed sensing technology in brain 3D T2-FLAIR sequence acquisition and evaluation of white matter hyperintensity
NEXT Effects of different flip angles and delay times on image quality of liver and biliary system in hepatobiliary phase images of Gd-BOPTA-enhanced magnetic resonance images
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn