Share:
Share this content in WeChat
X
Review
Application progress of neuromelanin-sensitive MRI in Parkinson's disease
WANG Xiaoran  ZHANG Fulan  MA Jingxu 

Cite this article as: WANG X R, ZHANG F L, MA J X. Application progress of neuromelanin-sensitive MRI in Parkinson's disease[J]. Chin J Magn Reson Imaging, 2024, 15(2): 183-187, 234. DOI:10.12015/issn.1674-8034.2024.02.029.


[Abstract] Neuromelanin-sensitive magnetic resonance imaging (NM-MRI) is an emerging non-invasive technique utilized to visualize changes in neuromelanin (NM) within the brain. It exhibits sensitivity to the reduction or variation of intracranial neuromelanin levels. Parkinson's disease (PD), a prevalent neurodegenerative disorder, is characterized by the degeneration of dopamine neurons containing NM in the substantia nigra, resulting in a decrease in NM. Consequently, the detection of variations in NM-MRI of the substantia nigra can serve as an indirect indicator of the functional state of dopamine neurons. Role of NM-MRI in the diagnosis of PD cannot be ignored, furthermore, this paper reviews the recent advancements in NM-MRI research pertaining to the imaging of PD, with the objective of offering enhanced reference value for future related investigations, it is expected that with the maturity of NM-MRI technology, it will become an imaging tool to assist in clinical PD diagnosis and contribute to the study of the pathological mechanisms of PD.
[Keywords] Parkinson's disease;neuromelanin;substantia nigra;neuromelanin-sensitive magnetic resonance imaging;magnetic resonance imaging

WANG Xiaoran   ZHANG Fulan   MA Jingxu*  

Medical Image Center, the Second Affiliated Hospital of Xinjiang Medical University, Urumqi 830063, China

Corresponding author: MA J X, E-mail: 15899136376@163.com

Conflicts of interest   None.

Received  2023-07-25
Accepted  2024-01-09
DOI: 10.12015/issn.1674-8034.2024.02.029
Cite this article as: WANG X R, ZHANG F L, MA J X. Application progress of neuromelanin-sensitive MRI in Parkinson's disease[J]. Chin J Magn Reson Imaging, 2024, 15(2): 183-187, 234. DOI:10.12015/issn.1674-8034.2024.02.029.

[1]
CAI W, WAKAMATSU K, ZUCCA F A, et al. DOPA pheomelanin is increased in nigral neuromelanin of Parkinson's disease[J/OL]. Prog Neurobiol, 2023, 223: 102414 [2023-07-25]. https://doi.org/10.1016/j.pneurobio.2023.102414. DOI: 10.1016/j.pneurobio.2023.102414.
[2]
WANG M D, WANG H C. Role of the ferroptosis-dopamine-neuromelanin regulatory net work in the pathogene-sis of Parkinson's disease[J]. Journal of International Neurology and Neurosurgery, 2021, 48(6): 564-566. DOI: 10.16636/j.cnki.jinn.1673-2642.2021.06.015.
[3]
WANG L, YAN Y Y, et al. Research progress of neuromelanin and the pathogenesis of Parkinson's disease[J]. Chin J Neurol, 2020, 53(11): 954-958. DOI: 10.3760/cma.j.cn113694-20200217-00088.
[4]
HEDGES D M, YORGASON J T, PEREZ A W, et al. Spontaneous formation of melanin from dopamine in the presence of iron[J/OL]. Antioxidants (Basel), 2020, 9(12): 1285 [2023-07-25]. https://www.mdpi.com/926100. DOI: 10.3390/antiox9121285.
[5]
CARBALLO-CARBAJAL I, LAGUNA A, ROMERO-GIMÉNEZ J, et al. Brain tyrosinase overexpression implicates age-dependent neuromelanin production in Parkinson's disease pathogenesis[J/OL]. Nat Commun, 2019, 10(1): 973 [2023-07-25]. https://rdcu.be/dsEqL. DOI: 10.1038/s41467-019-08858-y.
[6]
CAPUCCIATI A, ZUCCA F A, MONZANI E, et al. Interaction of neuromelanin with xenobiotics and consequences for neurodegeneration; promising experimental models[J/OL]. Antioxidants (Basel, Switzerland), 2021, 10(6): 824 [2023-07-25]. https://vpntsg.xjmu.edu.cn:8088/ssnpp/nb2hi4dthixs653xo4xg2zdqnexgg33n/1118982. DOI: 10.3390/antiox10060824.
[7]
VILA M. Neuromelanin, aging, and neuronal vulnerability in Parkinson's disease[J]. Mov Disord, 2019, 34(10): 1440-1451. DOI: 10.1002/mds.27776.
[8]
STOCKWELL B R. Ferroptosis turns 10: Emerging mechanisms, physiological functions, and therapeutic applications[J]. Cell, 2022, 185(14): 2401-2421. DOI: 10.1016/j.cell.2022.06.003.
[9]
ZUCCA F A, CAPUCCIATI A, BELLEI C, et al. Neuromelanins in brain aging and Parkinson's disease: synthesis, structure, neuroinflammatory, and neurodegenerative role[J]. IUBMB Life, 2023, 75(1): 55-65. DOI: 10.1002/iub.2654.
[10]
NAGATSU T, NAKASHIMA A, WATANABE H, et al. Neuromelanin in Parkinson's disease: Tyrosine hydroxylase and tyrosinase[J/OL]. Int J Mol Sci, 2022, 23(8): 4176 [2023-07-25]. https://www.mdpi.com/1581362. DOI: 10.3390/ijms23084176.
[11]
HE N, CHEN Y, LEWITT P A, et al. Application of neuromelanin MR imaging in Parkinson disease[J]. J Magn Reson Imaging, 2023, 57(2): 337-352. DOI: 10.1002/jmri.28414.
[12]
MANN D M, YATES P O. Lipoprotein pigments--their relationship to ageing in the human nervous system. Ⅱ. The melanin content of pigmented nerve cells[J]. Brain, 1974, 97(3): 489-498. DOI: 10.1093/brain/97.1.489.
[13]
GONZALEZ-SEPULVEDA M, COMPTE J, CUADROS T, et al. In vivo reduction of age-dependent neuromelanin accumulation mitigates features of Parkinson's disease[J]. Brain, 2023, 146(3): 1040-1052. DOI: 10.1093/brain/awac445.
[14]
BETTS M J, KIRILINA E, OTADUY M C G, et al. Locus coeruleus imaging as a biomarker for noradrenergic dysfunction in neurodegenerative diseases[J]. Brain, 2019, 142(9): 2558-2571. DOI: 10.1093/brain/awz193.
[15]
ZECCA L, SWARTZ H M. Total and paramagnetic metals in human substantia nigra and its neuromelanin[J]. J Neural Transm Park Dis Dement Sect, 1993, 5(3): 203-213. DOI: 10.1007/BF02257675.
[16]
SULZER D, CASSIDY C, HORGA G, et al. Neuromelanin detection by magnetic resonance imaging (MRI) and its promise as a biomarker for Parkinson's disease[J/OL]. NPJ Parkinsons Dis, 2018, 4: 11 [2023-07-25]. https://rdcu.be/dsEwS. DOI: 10.1038/s41531-018-0047-3.
[17]
TRUJILLO P, SUMMERS P E, FERRARI E, et al. Contrast mechanisms associated with neuromelanin-MRI[J]. Magn Reson Med, 2017, 78(5): 1790-800. DOI: 10.1002/mrm.26584.
[18]
SALZMAN G, KIM J, HORGA G, et al. Standardized data acquisition for neuromelanin-sensitive magnetic resonance imaging of the substantia nigra[J/OL]. J Vis Exp, 2021, 175: 10.3791/62493 [2023-07-25]. https://doi.org/10.3791/62493. DOI: 10.3791/62493.
[19]
CHEN Y, GONG T, SUN C, et al. Regional age-related changes of neuromelanin and iron in the substantia nigra based on neuromelanin accumulation and iron deposition[J]. Eur Radiol, 2023, 33(5): 3704-3714. DOI: 10.1007/s00330-023-09411-8.
[20]
SASAKI M, SHIBATA E, TOHYAMA K, et al. Neuromelanin magnetic resonance imaging of locus ceruleus and substantia nigra in Parkinson's disease[J]. Neuroreport, 2006, 17(11): 1215-1218. DOI: 10.1097/01.wnr.0000227984.84927.a7.
[21]
SCHWARZ S T, RITTMAN T, GONTU V, et al. T1-weighted MRI shows stage-dependent substantia nigra signal loss in Parkinson's disease[J]. Mov Disord, 2011, 26(9): 1633-1638. DOI: 10.1002/mds.23722.
[22]
CHEN X, HUDDLESTON D E, LANGLEY J, et al. Simultaneous imaging of locus coeruleus and substantia nigra with a quantitative neuromelanin MRI approach[J]. Magn Reson Imaging, 2014, 32(10): 1301-1306. DOI: 10.1016/j.mri.2014.07.003.
[23]
OSHIMA S, FUSHIMI Y, OKADA T, et al. Neuromelanin-sensitive magnetic resonance imaging using DANTE pulse[J]. Mov Disord, 2021, 36(4): 874-882. DOI: 10.1002/mds.28417.
[24]
HE N, GHASSABAN K, HUANG P, et al. Imaging iron and neuromelanin simultaneously using a single 3D gradient echo magnetization transfer sequence: Combining neuromelanin, iron and the nigrosome-1 sign as complementary imaging biomarkers in early stage Parkinson's disease[J/OL]. Neuroimage, 2021, 230: 117810 [2023-07-25]. https://doi.org/10.1016/j.neuroimage. DOI: 10.1016/j.neuroimage.2021.117810.
[25]
LIU Y, LI J, HE N, et al. Optimizing neuromelanin contrast in the substantia nigra and locus coeruleus using a magnetization transfer contrast prepared 3D gradient recalled echo sequence[J/OL]. Neuroimage, 2020, 218: 116935 [2023-07-25]. https://www.sciencedirect.com/science/article/pii/S1053811920304213?via%3Dihub. DOI: 10.1016/j.neuroimage.2020.116935.
[26]
HANSEN A K, KNUDSEN K, LILLETHORUP T P, et al. In vivo imaging of neuromelanin in Parkinson's disease using 18F-AV-1451 PET[J/OL]. Brain, 2016, 139(Pt 7): 2039-2049. DOI: 10.1093/brain/aww098.
[27]
MARTín-bastidA A, LAO-KAIM N P, ROUSSAKIS A A, et al. Relationship between neuromelanin and dopamine terminals within the Parkinson's nigrostriatal system[J]. Brain, 2019, 142(7): 2023-2036. DOI: 1093/brain/awz120.
[28]
KUYA K, SHINOHARA Y, MIYOSHI F, et al. Correlation between neuromelanin-sensitive MR imaging and (123)I-FP-CIT SPECT in patients with parkinsonism[J]. Neuroradiology, 2016, 58(4): 351-356. DOI: 10.1007/s00234-016-1644-7.
[29]
KEREN N I, TAHERI S, VAZEY E M, et al. Histologic validation of locus coeruleus MRI contrast in post-mortem tissue[J]. Neuroimage, 2015, 113: 235-245. DOI: 10.1016/j.neuroimage.2015.03.020.
[30]
ITO H, KAWAGUCHI H, KODAKA F, et al. Normative data of dopaminergic neurotransmission functions in substantia nigra measured with MRI and PET: Neuromelanin, dopamine synthesis, dopamine transporters, and dopamine D(2) receptors[J]. Neuroimage, 2017, 158: 12-17. DOI: 10.1016/j.neuroimage.2017.06.066.
[31]
CASSIDY C M, ZUCCA F A, GIRGIS R R, et al. Neuromelanin-sensitive MRI as a noninvasive proxy measure of dopamine function in the human brain[J]. Proc Natl Acad Sci U S A, 2019, 116(11): 5108-5117. DOI: 10.1073/pnas.1807983116.
[32]
OKUZUMI A, HATANO T, KAMAGATA K, et al. Neuromelanin or DaT-SPECT: which is the better marker for discriminating advanced Parkinson's disease?[J]. Eur J Neuro, 2019, 26(11): 1408-1416. DOI: 10.1111/ene.14009.
[33]
MAITI B, PERLMUTTER J S. Imaging in movement disorders[J]. Continuum (Minneapolis, Minn), 2023, 29(1): 194-218. DOI: 10.1212/CON.0000000000001210.
[34]
WENGLER K, ASHINOFF B K, PUERARO E, et al. Association between neuromelanin-sensitive MRI signal and psychomotor slowing in late-life depression[J]. Neuropsychopharmacology, 2021, 46(7): 1233-1239. DOI: 10.1038/s41386-020-00860-z.
[35]
LI Y, WANG C, WANG J, et al. Mild cognitive impairment in de novo Parkinson's disease: A neuromelanin MRI study in locus coeruleus[J]. Mov Disord, 2019, 34(6): 884-892. DOI: 10.1002/mds.27682.
[36]
DOPPLER C E J, KINNERUP M B, BRUNE C, et al. Regional locus coeruleus degeneration is uncoupled from noradrenergic terminal loss in Parkinson's disease[J]. Brain, 2021, 144(9): 2732-2744. DOI: 10.1093/brain/awab236.
[37]
GUO Y, WANG J. Research pro-gress of neuromelanin magnetic resonance imaging in Parkinson's disease[J]. Radiol Prac, 2022, 37(4): 525-528. DOI: 10.13609/j.cnki.1000-0313.
[38]
BIONDETTI E, GAURAV R, YAHIA-CHERIF L, et al. Spatiotemporal changes in substantia nigra neuromelanin content in Parkinson's disease[J]. Brain, 2020, 143(9): 2757-2570. DOI: 10.1093/brain/awaa216.
[39]
XING Y, SAPUAN A H, MARTÍN-BASTIDA A, et al. Neuromelanin-MRI to quantify and track nigral depigmentation in Parkinson's disease: A multicenter longitudinal study using template-based standardized analysis[J]. Mov Disord, 2022, 37(5): 1028-1039. DOI: 10.1002/mds.28934.
[40]
SUNG Y H, NOH Y, KIM E Y. Early-stage Parkinson's disease: Abnormal nigrosome 1 and 2 revealed by a voxelwise analysis of neuromelanin-sensitive MRI[J]. Hum Brain Mapp, 2021, 42(9): 2823-2832. DOI: 10.1002/hbm.25406.
[41]
WANG L, YAN Y, ZHANG L, et al. Substantia nigra neuromelanin magnetic resonance imaging in patients with different subtypes of Parkinson disease[J]. J Neural Transm (Vienna), 2021, 128(2): 171-179. DOI: 10.1007/s00702-020-02295-8.
[42]
WANG S, WU T, CAI Y, et al. Neuromelanin magnetic resonance imaging of substantia nigra and locus coeruleus in Parkinson's disease with freezing of gait[J/OL]. Front Aging Neurosci, 2023, 15: 1060935 [2023-07-25]. https://doi.org/10.3389/fnagi.2023.1060935. DOI: 10.3389/fnagi.2023.1060935.
[43]
DE PIETRO FRANCO ZORZENON C, ALMEIDA ANTÔNIO BIENES G H, DUARTE ALVES E, et al. Magnetic resonance imaging evaluation of nigrosome 1 and neuromelanin can assist Parkinson's disease diagnosis, but requires an expert neuroradiologist[J]. Parkinsonism Relat Disord, 2021, 83: 8-12. DOI: 10.1016/j.parkreldis.2020.12.006.
[44]
HE N, LANGLEY J, HUDDLESTON D E, et al. Increased iron-deposition in lateral-ventral substantia nigra pars compacta: A promising neuroimaging marker for Parkinson's disease[J/OL]. NeuroImage Clin, 2020, 28: 102391 [2023-07-25]. https://pubmed.ncbi.nlm.nih.gov/32889398/. DOI: 10.1016/j.nicl.2020.102391.
[45]
GAURAV R, YAHIA-CHERIF L, PYATIGORSKAYA N, et al. Longitudinal changes in neuromelanin MRI signal in Parkinson's disease: A progression marker[J]. Mov Disord, 2021, 36(7): 1592-1602. DOI: 10.1002/mds.28531.
[46]
JIN Z, WANG Y, JOKAR M, et al. Automatic detection of neuromelanin and iron in the midbrain nuclei using a magnetic resonance imaging-based brain template[J]. Hum Brain Mapp, 2022, 43(6): 2011-2025. DOI: 10.1002/hbm.25770.
[47]
WENGLER K, HE X, ABI-DARGHAM A, et al. Reproducibility assessment of neuromelanin-sensitive magnetic resonance imaging protocols for region-of-interest and voxelwise analyses[J/OL]. Neuroimage, 2020, 208: 116457 [2023-07-25]. https://doi.org/10.1016/j.neuroimage.2019.116457. DOI: 10.1016/j.neuroimage.2019.116457.
[48]
GAURAV R, PYATIGORSKAYA N, BIONDETTI E, et al. Deep learning-based neuromelanin MRI changes of isolated REM sleep behavior disorder[J]. Mov Disord , 2022, 37(5): 1064-1069. DOI: 10.1002/mds.28933.
[49]
NOBILEAU A, GAURAV R, CHOUGAR L, et al. Neuromelanin-sensitive magnetic resonance imaging changes in the locus coeruleus/subcoeruleus complex in patients with typical and atypical Parkinsonism[J]. Mov Disord, 2023, 38(3): 479-484. DOI: 10.1002/mds.29309.
[50]
WANG J, HUANG Z, LI Y, et al. Neuromelanin-sensitive MRI of the substantia nigra: An imaging biomarker to differentiate essential tremor from tremor-dominant Parkinson's disease[J]. Parkinsonism Relat Disord, 2019, 58: 3-8. DOI: 10.1016/j.parkreldis.2018.07.007.
[51]
REIMÃO S, PITA LOBO P, NEUTEL D, et al. Substantia nigra neuromelanin-MR imaging differentiates essential tremor from Parkinson's disease[J]. Mov Disord, 2015, 30(7): 953-959. DOI: 10.1002/mds.26182.
[52]
MATSUURA K, II Y, MAEDA M, et al. Neuromelanin-sensitive magnetic resonance imaging in disease differentiation for parkinsonism or neurodegenerative disease affecting the basal ganglia[J]. Parkinsonism Relat Disord, 2021, 87: 75-81. DOI: 10.1016/j.parkreldis.2021.05.002.
[53]
CHOUGAR L, ARSOVIC E, GAURAV R, et al. Regional selectivity of neuromelanin changes in the substantia nigra in atypical Parkinsonism[J]. Mov Disord, 2022, 37(6): 1245-1255. DOI: 10.1002/mds.28988.
[54]
LEITÃO R, GUERREIRO C, NUNES R G, et al. Neuromelanin magnetic resonance imaging of the substantia nigra in Huntington's disease[J]. J Huntingtons Dis, 2020, 9(2): 143-148. DOI: 10.3233/JHD-190388.
[55]
TANG F, LIU H, ZHANG X J, et al. Evidence for dopamine abnormalities following acute methamphetamine exposure assessed by neuromelanin-sensitive magnetic resonance imaging[J/OL]. Front Aging Neurosci, 2022, 14: 865825 [2023-07-25]. https://doi.org/10.3389/fnagi.2022.865825. DOI: 10.3389/fnagi.2022.865825.

PREV Research progress on freezing of gait in Parkinson,s disease based on multimodal MRI
NEXT Progresses of neuroimaging research on neuropathic pain after spinal cord injury
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn