Share:
Share this content in WeChat
X
Review
Progresses of neuroimaging research on neuropathic pain after spinal cord injury
SUN Chuchu  CHEN Nan  HE Xun 

Cite this article as: SUN C C, CHEN N, HE X. Progresses of neuroimaging research on neuropathic pain after spinal cord injury[J]. Chin J Magn Reson Imaging, 2024, 15(2): 188-191, 197. DOI:10.12015/issn.1674-8034.2024.02.030.


[Abstract] The incidence of neuropathic pain (NP) after spinal cord injury (SCI) is high, which seriously affects the quality of life of patients. Because its pathogenesis has been unclear, there is no effective treatment at present. Functional magnetic resonance imaging (fMRI) can objectively reflect the changes of cerebrospinal circuits in patients with SCI-NP, which plays an important role in revealing the pathological mechanism of patients with NP, and will contribute to more information and new ideas in clinical SCI-NP treatment. This paper reviews the application of SCI-NP cerebrospinal circuits in functional magnetic resonance imaging. The aim is to understand the current research status of SCI-NP neuroimaging and provide reference for further research of SCI-NP in the future.
[Keywords] spinal cord injury;neuropathic pain;brain-spinal circuit;functional magnetic resonance imaging;magnetic resonance imaging

SUN Chuchu1, 2, 3   CHEN Nan1, 2*   HE Xun4  

1 Department of Radiology and Nulear Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China

2 Beijing Key Lab of MRI and Brain Informatics, Beijing 100053, China

3 Department of Nuclear Medicine, Beijing Electric Power Hospital, State Grid Corporation, Beijing 100073, China

4 Department of Neurology, Beijing Electric Power Hospital, State Grid Corporation, Beijing 100073, China

Corresponding author: CHEN N, E-mail: chenzen8057@sina.com

Conflicts of interest   None.

Received  2023-07-15
Accepted  2024-01-29
DOI: 10.12015/issn.1674-8034.2024.02.030
Cite this article as: SUN C C, CHEN N, HE X. Progresses of neuroimaging research on neuropathic pain after spinal cord injury[J]. Chin J Magn Reson Imaging, 2024, 15(2): 188-191, 197. DOI:10.12015/issn.1674-8034.2024.02.030.

[1]
HUNT C, MOMAN R, PETERSON A, et al. Prevalence of chronic pain after spinal cord injury: a systematic review and meta-analysis[J]. Reg Anesth Pain Med, 2021, 46(4): 328-336. DOI: 10.1136/rapm-2020-101960.
[2]
LOH E, MIRKOWSKI M, AGUDELO A R, et al. The CanPain SCI clinical practice guidelines for rehabilitation management of neuropathic pain after spinal cord injury: 2021 update[J]. Spinal Cord, 2022, 60(6): 548-566. DOI: 10.1038/s41393-021-00744-z.
[3]
JUTZELER C R, HUBER E, CALLAGHAN M F, et al. Association of pain and CNS structural changes after spinal cord injury[J/OL]. Sci Rep, 2016, 6: 18534 [2023-07-15]. https://doi.org/10.1038/srep18534. DOI: 10.1038/srep18534.
[4]
PFYFFER D, WYSS P O, HUBER E, et al. Metabolites of neuroinflammation relate to neuropathic pain after spinal cord injury[J/OL]. Neurology, 2020, 95(7): e805-e814 [2023-07-15]. https://doi.org/10.1212/WNL.0000000000010003. DOI: 10.1212/WNL.0000000000010003.
[5]
SOLSTRAND DAHLBERG L, BECERRA L, BORSOOK D, et al. Brain changes after spinal cord injury, a quantitative meta-analysis and review[J]. Neurosci Biobehav Rev, 2018, 90: 272-293. DOI: 10.1016/j.neubiorev.2018.04.018.
[6]
WILLIS W D, WESTLUND K N. Neuroanatomy of the pain system and of the pathways that modulate pain[J]. J Clin Neurophysiol, 1997, 14(1): 2-31. DOI: 10.1097/00004691-199701000-00002.
[7]
MILLAN M J. The induction of pain: an integrative review[J]. Prog Neurobiol, 1999, 57(1): 1-164. DOI: 10.1016/s0301-0082(98)00048-3.
[8]
APPELGREN D, ENOCSSON H, SKOGMAN B H, et al. Neutrophil extracellular traps (nets) in the cerebrospinal fluid samples from children and adults with central nervous system infections[J/OL]. Cells, 2019, 9(1): 43 [2023-07-15]. https://doi.org/10.3390/cells9010043. DOI: 10.3390/cells9010043.
[9]
FENG Z, MIN L, LIANG L, et al. Neutrophil extracellular traps exacerbate secondary injury via promoting neuroinflammation and blood-spinal cord barrier disruption in spinal cord injury[J/OL]. Front Immunol, 2021, 12: 698249 [2023-07-15]. https://doi.org/10.3389/fimmu.2021.698249. DOI: 10.3389/fimmu.2021.698249.
[10]
KANG L, YU H, YANG X, et al. Neutrophil extracellular traps released by neutrophils impair revascularization and vascular remodeling after stroke[J/OL]. Nat Commun, 2020, 11(1): 2488 [2023-07-15]. https://doi.org/10.1038/s41467-020-16191-y. DOI: 10.1038/s41467-020-16191-y.
[11]
TANSLEY S, GU N, GUZMÁN A U, et al. Microglia-mediated degradation of perineuronal nets promotes pain[J]. Science, 2022, 377(6601): 80-86. DOI: 10.1126/science.abl6773.
[12]
TSUDA M, KOGA K, CHEN T, et al. Neuronal and microglial mechanisms for neuropathic pain in the spinal dorsal horn and anterior cingulate cortex[J]. J Neurochem, 2017, 141(4): 486-498. DOI: 10.1111/jnc.14001.
[13]
TAYLOR A M, MEHRABANI S, LIU S, et al. Topography of microglial activation in sensory- and affect-related brain regions in chronic pain[J]. J Neurosci Res, 2017, 95(6): 1330-1335. DOI: 10.1002/jnr.23883.
[14]
BORST K, DUMAS A A, PRINZ M. Microglia: Immune and non-immune functions[J/OL]. Immunity, 2021, 54(10): 21942208 [2023-07-15]. https://doi.org/10.1016/j.immuni.2021.09.014. DOI: 10.1016/j.immuni.2021.09.014.
[15]
KOCOT-KEPSKA M, ZAJACZKOWSKA R, MIKA J, et al. Peripheral mechanisms of neuropathic pain-the role of neuronal and non-neuronal interactions and their implications for topical treatment of neuropathic pain[J/OL]. Pharmaceuticals (Basel), 2021, 14(2): 77 [2023-07-15]. https://doi.org/10.3390/ph14020077. DOI: 10.3390/ph14020077.
[16]
COLLOCA L, LUDMAN T, BOUHASSIRA D, et al. Neuropathic pain[J/OL]. Nat Rev Dis Primers, 2017, 3: 17002 [2023-07-15]. https://doi.org/10.1038/nrdp.2017.2. DOI: 10.1038/nrdp.2017.2.
[17]
ZIEGLER G, GRABHER P, THOMPSON A, et al. Progressive neurodegeneration following spinal cord injury: Implicationsforclinicaltrials[J/OL]. Neurology, 2018, 90(14): e1257-e1266 [2023-07-15]. https://pubmed.ncbi.nlm.nih.gov/29514946/. DOI: 10.1212/WNL.0000000000005258.
[18]
WIDERSTROM-NOGA E. Neuropathic pain and spinal cord injury: Phenotypes and pharmacological management[J/OL]. Drugs, 2017, 77(9): 967984 [2023-07-15]. https://doi.org/10.1007/s4026501707478. DOI: 10.1007/s40265-017-0747-8.
[19]
FREUND P, CURT A, FRISTON K, et al. Tracking changes following spinal cord injury: insights from neuroimaging[J/OL]. Neuroscientist, 2013, 19(2): 116128 [2023-07-15]. https://doi.org/10.1177/1073858412449192. DOI: 10.1177/1073858412449192.
[20]
DAVID G, SEIF M, HUBER E, et al. In vivo evidence of remote neural degeneration in the lumbar enlargement after cervical injury[J/OL]. Neurology, 2019, 92(12): e1367-e1377 [2023-07-15]. https://doi.org/10.1212/WNL.0000000000007137. DOI: 10.1212/wnl.0000000000007137.
[21]
KIKKERT S, PFYFFER D, VERLING M, et al. Finger somatotopy is preserved after tetraplegia but deteriorates overtime[J/OL]. Elife, 2021; 10: e67713 [2023-07-15]. https://doi.org/10.7554/eLife.67713. DOI: 10.7554/eLife.67713.
[22]
VIERCK C. Mechanisms of below-level pain following spinal cord injury (SCI)[J]. J Pain, 2020, 21(3-4): 262-280. DOI: 10.1016/j.jpain.2019.08.007.
[23]
WYSS P O, HUBER E, CURT A, et al. MR spectroscopy of the cervical spinal cord in chronic spinal cord injury[J]. Radiology, 2019, 291(1): 131-138. DOI: 10.1148/radiol.2018181037.
[24]
MAY A. Chronic pain may change the structure of the brain[J]. Pain, 2008, 137(1): 7-15. DOI: 10.1016/j.pain.2008.02.034.
[25]
HUMANES-VALERA D, FOFFANI G, ALONSO-CALVINO E, et al. Dual cortical plasticity after spinal cord injury[J]. CerebCortex, 2017, 27(5): 2926-2940. DOI: 10.1093/cercor/bhw142.
[26]
DONG D, HOSOMI K, MORI N, et al. White matter microstructural alterations in patients with neuropathic pain after spinal cord injury: a diffusion tensor imaging study[J/OL]. Front Neurol, 2023, 14: 1241658 [2023-07-15]. https://doi.org/10.3389/fneur.2023.1241658. DOI: 10.3389/fneur.2023.1241658.
[27]
YOON E J, KIM Y K, SHIN H I, et al. Cortical and white matter alterations in patients with neuropathic pain after spinal cord injury[J]. Brain Res, 2013, 1540: 64-73. https://doi.org/10.1016/j.brainres.2013.10.007. DOI: 10.1016/j.brainres.2013.10.007.
[28]
GUSTIN S M, WRIGLEY P J, SIDDALL P J, et al. Brain anatomy changes associated with persistent neuropathic pain following spinal cord injury[J]. CerebCortex, 2010, 20(6): 1409-1419. DOI: 10.1093/cercor/bhp205.
[29]
MOLE T B, MACIVER K, SLUMING V, et al. Specific brain morphometric changes in spinal cord injury with and without neuropathicpain[J]. Neuroimage Clin, 2014, 5:28-35. DOI: 10.1016/j.nicl.2014.05.014.
[30]
HAMMOND TIMOTHY R, GADEA A, DUPREE J, et al. Astrocyte-derived endothelin-1 inhibits remyelination through notch activation[J/OL]. Neuron, 2014, 81(6): 1442 [2023-07-15]. https://doi.org/10.1016/j.neuron.2013.11.015. DOI: 10.1016/j.neuron.2014.03.007.
[31]
JURYNCZYK M, SELMAJ K. Notch: a new player in MS mechanisms[J]. J Neuroimmunol, 2010, 218(1-2): 3-11. DOI: 10.1016/j.jneuroim.2009.08.010.
[32]
DUAN H, SHEN F, LI L, et al. Activation of the Notch signaling pathway in the anterior cingulate cortex is involved in the pathological process of neuropathic pain[J]. Pain, 2021, 162(1): 263-274. DOI: 10.1097/j.pain.0000000000002014.
[33]
LI C, HUANG S, ZHOU W, et al. Effects of the notch signaling pathway on secondary brain changes caused by spinal cord injury in mice[J]. Neurochem Res, 2022, 47(6): 1651-1663. DOI: 10.1007/s11064-022-03558-4.
[34]
KYATHANAHALLY S P, AZZARITO M, ROSNER J, et al. Microstructural plasticity in nociceptive pathways after spinal cord injury[J]. J Neurol Neurosurg Psychiatry, 2021, 92(8): 863-871. DOI: 10.1136/jnnp-2020-325580.
[35]
RICHTER J K, VALLESI V, ZOLCH N, et al. Metabolic profile of complete spinal cord injury in pons and cerebellum: A 3T 1H MRS study[J/OL]. Sci Rep, 2023, 13(1): 7245 [2023-07-15]. https://doi.org/10.1038/s41598-023-34326-1. DOI: 10.1038/s41598-023-34326-1.
[36]
WIDERSTROM-NOGA E, PATTANY P M, CRUZ-ALMEIDA Y, et al. Metabolite concentrations in the anterior cingulate cortex predict high neuropathic pain impact after spinal cord injury[J]. Pain, 2013, 154(2): 204-212. DOI: 10.1016/j.pain.2012.07.022.
[37]
GUSTIN S M, WRIGLEY P J, YOUSSEF A M, et al. Thalamic activity and biochemical changes in individuals with neuropathic pain after spinal cord injury[J]. Pain, 2014, 155(5): 1027-1036. DOI: 10.1016/j.pain.2014.02.008.
[38]
WIDERSTROM-NOGA E, CRUZ-ALMEIDA Y, Felix E R, et al. Somatosensory phenotype is associated with thalamic metabolites and pain intensity after spinal cord injury[J]. Pain, 2015, 156(1): 166-174. DOI: 10.1016/j.pain.0000000000000019.
[39]
WRIGLEY P J, PRESS S R, GUSTIN S M, et al. Neuropathic pain and primary somatosensory cortex reorganization following spinal cord injury[J]. Pain, 2009, 141(1-2): 52-59. DOI: 10.1016/j.pain.2008.10.007.
[40]
ENDO T, SPENGER C, HAO J, et al. Functional MRI of the brain detects neuropathic pain in experimental spinal cord injury[J]. Pain, 2008, 138(2): 292-300. DOI: 10.1016/j.pain.2007.12.017.
[41]
SEMINOWICZ D A, JIANG L, JI Y, et al. Thalamocortical asynchrony in conditions of spinal cord injury pain in rats[J]. J Neurosci, 2012, 32(45): 15843-15848. DOI: 10.1523/jneurosci.2927-12.2012.
[42]
SANGANAHALLI B G, CHITTURI J, HERMAN P, et al. Supraspinal sensorimotor and pain-related reorganization after a hemicontusion rat cervical spinal cord injury[J]. J Neurotrauma. 2021, 38(24): 3393-3405. DOI: 10.1089/neu.2021.0190.
[43]
LI X, WANG L, CHEN Q, et al. The reorganization of insular subregions in individuals with below-level neuropathic pain following incomplete spinal cord injury[J]. Neural Plast, 2020, 2020: 1-9. DOI: 10.1155/2020/2796571.
[44]
HUYNH V, LÜTOLF R, ROSNER J, et al. Supraspinal nociceptive networks in neuropathic pain after spinal cord injury[J]. Hum Brain Mapp, 2021, 42(12): 3733-3749. DOI: 10.1002/hbm.25401.
[45]
BLACK S R, KING J B, MAHAN M A, et al. Functional hyperconnectivity and task-based activity changes associated with neuropathic pain after spinal cord injury: A pilot study[J/OL]. Front Neurol, 2021, 12: 613630 [2023-07-15]. https://doi.org/10.3389/fneur.2021.613630. DOI: 10.3389/fneur.2021.613630.
[46]
APKARIAN A V, BUSHNELL M C, TREEDE R D, et al. Human brain mechanisms of pain perception and regulation in health and disease[J]. Eur J Pain, 2005, 9(4): 463-84. DOI: 10.1016/j.ejpain.2004.11.001.
[47]
TODORICH B, PASQUINI J M, GARCIA C I, et al. Oligodendrocytes and myelination: therole of iron[J]. Glia, 2009, 57(5): 467-478. DOI: 10.1002/glia.20784.
[48]
XU J, LI P, LU F, et al. Domino reaction of neurovascular unit in neuropathic pain after spinal cord injury[J/OL]. ExpNeurol, 2023, 359: 114273 [2023-07-15]. https://doi.org/10.1016/j.expneurol.2022.114273. DOI: 10.1016/j.expneurol.2022.114273.
[49]
MILLAN M J. Descending control of pain[J/OL]. ProgNeurobiol, 2002, 66(6): 355474 [2023-07-15]. https://doi.org/10.1016/s0301-0082(02)00009-6. DOI: 10.1016/s0301-0082(02)00009-6.
[50]
HEINRICHER M M, TAVARES I, LEITH J L, et al. Descending control of nociception: Specificity, recruitment and plasticity[J]. Brain Res Rev, 2009, 60(1): 214-225. DOI: 10.1016/j.brainresrev.2008.12.009.
[51]
VALET M, SPRENGER T, BOECKER H, et al. Distraction modulates connectivity of the cingulo-frontal cortex and the midbrain during pain--an fMRI analysis[J]. Pain, 2004, 109(3): 399-408. DOI: 10.1016/j.pain.2004.02.033.
[52]
WIECH K, PLONER M, TRACEY I. Neurocognitive aspects of pain perception[J]. Trends Cogn Sci, 2008, 12(8): 306-313. DOI: 10.1016/j.tics.2008.05.005.

PREV Application progress of neuromelanin-sensitive MRI in Parkinson,s disease
NEXT Research progression of MRI radiomics in glioma
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn