Share:
Share this content in WeChat
X
Review
Research progression of MRI radiomics in glioma
LIANG Qian  ZHANG Hui 

Cite this article as: LIANG Q, ZHANG H. Research progression of MRI radiomics in glioma[J]. Chin J Magn Reson Imaging, 2024, 15(2): 192-197. DOI:10.12015/issn.1674-8034.2024.02.031.


[Abstract] Glioma is the most common primary malignant tumor of the central nervous system. It is of great clinical significance to realize the differential diagnosis of glioma, preoperative prediction of pathological grade, genotyping, tumor microenvironment and prognosis evaluation of glioma for individualized treatment. In recent years, radiomics has made great progress in the diagnosis and treatment of glioma because of its noninvasive and accurate characteristics. This paper reviews the research progress of MRI radiomics in glioma, in order to expand the new ideas of MRI radiomics in the accurate diagnosis and treatment of glioma, so as to provide clinical guidance for the diagnosis and individualized management of glioma.
[Keywords] glioma;radiomics;magnetic resonance imaging;preoperative classification;genotyping;prognosis assessment;tumor microenvironment

LIANG Qian1   ZHANG Hui1, 2*  

1 College of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China

2 Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan 030001, China

Corresponding author: ZHANG H, E-mail: zhanghui_mr@163.com

Conflicts of interest   None.

Received  2023-11-01
Accepted  2024-02-02
DOI: 10.12015/issn.1674-8034.2024.02.031
Cite this article as: LIANG Q, ZHANG H. Research progression of MRI radiomics in glioma[J]. Chin J Magn Reson Imaging, 2024, 15(2): 192-197. DOI:10.12015/issn.1674-8034.2024.02.031.

[1]
XU H, ZHANG A, HAN X, et al. ITGB2 as a prognostic indicator and a predictive marker for immunotherapy in gliomas[J]. Cancer Immunol Immunother, 2022, 71(3): 645-660. DOI: 10.1007/s00262-021-03022-2.
[2]
DU Q, LIN Y, ZHANG W, et al. Bioinformatics analysis of LMAN1 expression, clinical characteristics, and its effects on cell proliferation and invasion in glioma[J/OL]. Brain Res, 2022, 1789: 147952 [2023-11-01]. https://pubmed.ncbi.nlm.nih.gov/35623391/. DOI: 10.1016/j.brainres.2022.147952.
[3]
PARK Y W, KIM S, PARK C J, et al. Adding radiomics to the 2021 WHO updates may improve prognostic prediction for current IDH-wildtype histological lower-grade gliomas with known EGFR amplification and TERT promoter mutation status[J]. Eur Radiol, 2022, 32(12): 8089-8098. DOI: 10.1007/s00330-022-08941-x.
[4]
YIN H L, LI D B, JIANG Y, et al. High-throughput texture analysis in the distinction of single metastatic brain tumors from high-grade gliomas[J]. Chin J Oncol, 2018, 40(11): 841-846. DOI: 10.3760/cma.j.issn.0253-3766.2018.11.009.
[5]
ZHANG S R, ZHOU Y S, ZHANG R D, et al. The value of multi-parametric MRI-based radiomics models indistinguishing primary central nervous system lymphoma from high-grade glioma[J]. Chin J Magn Reson Imaging, 2023, 14(10): 54-57, 64. DOI: 10.12015/issn.1674-8034.2023.10.010.
[6]
BATHLA G, PRIYA S, LIU Y, et al. Radiomics-based differentiation between glioblastoma and primary central nervous system lymphoma: a comparison of diagnostic performance across different MRI sequences and machine learning techniques[J]. Eur Radiol, 2021, 31(11): 8703-8713. DOI: 10.1007/s00330-021-07845-6.
[7]
SARTORETTI E, SARTORETTI T, WYSS M, et al. Amide proton transfer weighted (APTw) imaging based radiomics allows for the differentiation of gliomas from metastases[J/OL]. Sci Rep, 2021, 11(1): 5506 [2023-11-01]. https://pubmed.ncbi.nlm.nih.gov/33750899/. DOI: 10.1038/s41598-021-85168-8.
[8]
GAO M, HUANG S, PAN X, et al. Machine learning-based radiomics predicting tumor grades and expression of multiple pathologic biomarkers in gliomas[J/OL]. Front Oncol, 2020, 10: 1676 [2023-11-01]. https://pubmed.ncbi.nlm.nih.gov/33014836/. DOI: 10.3389/fonc.2020.01676.
[9]
ZHUGE Y, NING H, MATHEN P, et al. Automated glioma grading on conventional MRI images using deep convolutional neural networks[J]. Med Phys, 2020, 47(7): 3044-3053. DOI: 10.1002/mp.14168.
[10]
ZHOU H, XU R, MEI H, et al. Application of Enhanced T1WI of MRI Radiomics in Glioma Grading[J/OL]. Int J Clin Pract, 2022, 2022: 3252574 [2023-11-01]. https://pubmed.ncbi.nlm.nih.gov/35685548/. DOI: 10.1155/2022/3252574.
[11]
LIN K, CIDAN W, QI Y, et al. Glioma grading prediction using multiparametric magnetic resonance imaging-based radiomics combined with proton magnetic resonance spectroscopy and diffusion tensor imaging[J]. Med Phys, 2022, 49(7): 4419-4429. DOI: 10.1002/mp.15648.
[12]
SU C, CHEN X, LIU C, et al. T2-FLAIR, DWI and DKI radiomics satisfactorily predicts histological grade and Ki-67 proliferation index in gliomas[J]. Am J Transl Res, 2021, 13(8): 9182-9194.
[13]
BJORKBLOM B, WIBOM C, ERIKSSON M, et al. Distinct metabolic hallmarks of WHO classified adult glioma subtypes[J]. Neuro Oncol, 2022, 24(9): 1454-1468. DOI: 10.1093/neuonc/noac042.
[14]
CHOI Y S, BAE S, CHANG J H, et al. Fully automated hybrid approach to predict the IDH mutation status of gliomas via deep learning and radiomics[J]. Neuro Oncol, 2021, 23(2): 304-313. DOI: 10.1093/neuonc/noaa177.
[15]
DECUYPER M, BONTE S, DEBLAERE K, et al. Automated MRI based pipeline for segmentation and prediction of grade, IDH mutation and 1p19q co-deletion in glioma[J/OL]. Comput Med Imaging Graph, 2021, 88: 101831 [2023-11-01]. https://pubmed.ncbi.nlm.nih.gov/33482430/. DOI: 10.1016/j.compmedimag.2020.101831.
[16]
WANG J, HU Y, ZHOU X, et al. A radiomics model based on DCE-MRI and DWI may improve the prediction of estimating IDH1 mutation and angiogenesis in gliomas[J/OL]. Eur J Radiol, 2022, 147: 110141 [2023-11-01]. https://pubmed.ncbi.nlm.nih.gov/34995947/. DOI: 10.1016/j.ejrad.2021.110141.
[17]
YAN J, ZHANG B, ZHANG S, et al. Quantitative MRI-based radiomics for noninvasively predicting molecular subtypes and survival in glioma patients[J/OL]. NPJ Precis Oncol, 2021, 5(1): 72 [2023-11-01]. https://pubmed.ncbi.nlm.nih.gov/34312469/. DOI: 10.1038/s41698-021-00205-z.
[18]
PENG H, HUO J, LI B, et al. Predicting isocitrate dehydrogenase (IDH) mutation status in gliomas using multiparameter MRI radiomics features[J]. J Magn Reson Imaging, 2021, 53(5): 1399-1407. DOI: 10.1002/jmri.27434.
[19]
YOGANANDA C G B, SHAH B R, NALAWADE S S, et al. MRI-based deep-learning method for determining glioma MGMT promoter methylation status[J]. AJNR Am J Neuroradiol, 2021, 42(5): 845-852. DOI: 10.3174/ajnr.A7029.
[20]
KATSIGIANNIS S, GRAU S, KRISCHEK B, et al. MGMT-positive vs MGMT-negative patients with glioblastoma: Identification of prognostic factors and resection threshold[J/OL]. Neurosurgery, 2021, 88(4): E323-E329 [2023-11-01]. https://pubmed.ncbi.nlm.nih.gov/33432978/. DOI: 10.1093/neuros/nyaa562.
[21]
XI Y B, GUO F, XU Z L, et al. Radiomics signature: A potential biomarker for the prediction of MGMT promoter methylation in glioblastoma[J]. J Magn Reson Imaging, 2018, 47(5): 1380-1387. DOI: 10.1002/jmri.25860.
[22]
JIANG C, KONG Z, LIU S, et al. Fusion radiomics features from conventional MRI predict MGMT promoter methylation status in lower grade gliomas[J/OL]. Eur J Radiol, 2019, 121: 108714 [2023-11-01]. https://pubmed.ncbi.nlm.nih.gov/31704598/. DOI: 10.1016/j.ejrad.2019.108714.
[23]
CHEN S, XU Y, YE M, et al. Predicting MGMT promoter methylation in diffuse gliomas using deep learning with radiomics[J/OL]. J Clin Med, 2022, 11(12): 3445 [2023-11-01]. https://pubmed.ncbi.nlm.nih.gov/35743511/. DOI: 10.3390/jcm11123445.
[24]
WEI J, YANG G, HAO X, et al. A multi-sequence and habitat-based MRI radiomics signature for preoperative prediction of MGMT promoter methylation in astrocytomas with prognostic implication[J]. Eur Radiol, 2019, 29(2): 877-888. DOI: 10.1007/s00330-018-5575-z.
[25]
KONG Z, JIANG C, ZHANG Y, et al. Thin-slice magnetic resonance imaging-based radiomics signature predicts chromosomal 1p/19q co-deletion status in grade Ⅱ and Ⅲ gliomas[J/OL]. Front Neurol, 2020, 11: 551771 [2023-11-01]. https://pubmed.ncbi.nlm.nih.gov/33192984/. DOI: 10.3389/fneur.2020.551771.
[26]
KHA Q H, LE V H, HUNG T N K, et al. Development and validation of an efficient MRI radiomics signature for improving the predictive performance of 1p/19q co-deletion in lower-grade gliomas[J/OL]. Cancers (Basel), 2021, 13(21): 5398 [2023-11-01]. https://pubmed.ncbi.nlm.nih.gov/34771562/. DOI: 10.3390/cancers13215398.
[27]
FAN Z, SUN Z, FANG S, et al. Preoperative Radiomics Analysis of 1p/19q Status in WHO Grade Ⅱ Gliomas[J/OL]. Front Oncol, 2021, 11: 616740 [2023-11-01]. https://pubmed.ncbi.nlm.nih.gov/34295805/. DOI: 10.3389/fonc.2021.616740.
[28]
CASALE R, LAVROVA E, SANDULEANU S, et al. Development and external validation of a non-invasive molecular status predictor of chromosome 1p/19q co-deletion based on MRI radiomics analysis of low grade glioma patients[J/OL]. Eur J Radiol, 2021, 139: 109678 [2023-11-01]. https://pubmed.ncbi.nlm.nih.gov/33848780/. DOI: 10.1016/j.ejrad.2021.109678.
[29]
LOUIS D N, PERRY A, WESSELING P, et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary[J]. Neuro Oncol, 2021, 23(8): 1231-1251. DOI: 10.1093/neuonc/noab106.
[30]
ŚLEDZIŃSKA P, BEBYN M G, FURTAK J, et al. Prognostic and predictive biomarkers in gliomas[J/OL]. Int J Mol Sci, 2021, 22(19): 10373 [2023-11-01]. https://pubmed.ncbi.nlm.nih.gov/34638714/. DOI: 10.3390/ijms221910373.
[31]
LU J, LI X, LI H. A radiomics feature-based nomogram to predict telomerase reverse transcriptase promoter mutation status and the prognosis of lower-grade gliomas[J/OL]. Clin Radiol, 2022, 77(8): e560-e567 [2023-11-01]. https://pubmed.ncbi.nlm.nih.gov/35595562/. DOI: 10.1016/j.crad.2022.04.005.
[32]
FANG S, FAN Z, SUN Z, et al. Radiomics features predict telomerase reverse transcriptase promoter mutations in world health organization grade ii gliomas via a machine-learning approach[J/OL]. Front Oncol, 2020, 10: 606741 [2023-11-01]. https://pubmed.ncbi.nlm.nih.gov/33643908/. DOI: 10.3389/fonc.2020.606741.
[33]
LI Y, LIU X, XU K, et al. MRI features can predict EGFR expression in lower grade gliomas: A voxel-based radiomic analysis[J]. Eur Radiol, 2018, 28(1): 356-362. DOI: 10.1007/s00330-017-4964-z.
[34]
CALABRESE E, RUDIE J D, RAUSCHECKER A M, et al. Combining radiomics and deep convolutional neural network features from preoperative MRI for predicting clinically relevant genetic biomarkers in glioblastoma[J/OL]. Neurooncol Adv, 2022, 4(1): vdac060 [2023-11-01]. https://pubmed.ncbi.nlm.nih.gov/35611269/. DOI: 10.1093/noajnl/vdac060.
[35]
GAO J, LIU Z, PAN H, et al. Preoperative discrimination of CDKN2A/B homozygous deletion status in isocitrate dehydrogenase‐mutant astrocytoma: A deep learning‐based radiomics model using MRI[J/OL]. J Magn Reson Imaging, 2023 [2023-11-01]. https://pubmed.ncbi.nlm.nih.gov/37555723/. DOI: 10.1002/jmri.28945.
[36]
YANG J, LI L, LUO T, et al. Cyclin-dependent kinase inhibitor 2A/B homozygous deletion prediction and survival analysis[J/OL]. Brain Sciences, 2023, 13(4): 548. https://pubmed.ncbi.nlm.nih.gov/37190513/. DOI: 10.3390/brainsci13040548.
[37]
REN Y, ZHANG X, RUI W, et al. Noninvasive prediction of IDH1 mutation and ATRX expression loss in low-grade gliomas using multiparametric MR radiomic features[J]. J Magn Reson Imaging, 2019, 49(3): 808-817. DOI: 10.1002/jmri.26240.
[38]
SUN C, FAN L, WANG W, et al. Radiomics and qualitative features from multiparametric MRI predict molecular subtypes in patients with lower-grade glioma[J/OL]. Front Oncol, 2021, 11: 756828 [2023-11-01]. https://pubmed.ncbi.nlm.nih.gov/35127472/. DOI: 10.3389/fonc.2021.756828.
[39]
ZHANG S, SUN H, SU X, et al. Automated machine learning to predict the co-occurrence of isocitrate dehydrogenase mutations and O(6)-methylguanine-DNA methyltransferase promoter methylation in patients with gliomas[J]. J Magn Reson Imaging, 2021, 54(1): 197-205. DOI: 10.1002/jmri.27498.
[40]
JIA X, ZHAI Y, SONG D, et al. A multiparametric MRI-based radiomics nomogram for preoperative prediction of survival stratification in glioblastoma patients with standard treatment[J/OL]. Front Oncol, 2022, 12: 758622 [2023-11-01]. https://pubmed.ncbi.nlm.nih.gov/35251957/. DOI: 10.3389/fonc.2022.758622.
[41]
LI G, LI L, LI Y, et al. An MRI radiomics approach to predict survival and tumour-infiltrating macrophages in gliomas[J]. Brain, 2022, 145(3): 1151-1161. DOI: 10.1093/brain/awab340.
[42]
XU C, PENG Y, ZHU W, et al. An automated approach for predicting glioma grade and survival of LGG patients using CNN and radiomics[J/OL]. Front Oncol, 2022, 12: 969907 [2023-11-01]. https://pubmed.ncbi.nlm.nih.gov/36033433/. DOI: 10.3389/fonc.2022.969907.
[43]
WANG J, ZHENG X, ZHANG J, et al. An MRI-based radiomics signature as a pretreatment noninvasive predictor of overall survival and chemotherapeutic benefits in lower-grade gliomas[J]. Eur Radiol, 2021, 31(4): 1785-1794. DOI: 10.1007/s00330-020-07581-3.
[44]
CHOI Y, NAM Y, JANG J, et al. Radiomics may increase the prognostic value for survival in glioblastoma patients when combined with conventional clinical and genetic prognostic models[J]. Eur Radiol, 2020, 31(4): 2084-2093. DOI: 10.1007/s00330-020-07335-1.
[45]
XU Y, HE X, LI Y, et al. The nomogram of MRI-based radiomics with complementary visual features by machine learning improves stratification of glioblastoma patients: A multicenter study[J]. J Magn Reson Imaging, 2021, 54(2): 571-583. DOI: 10.1002/jmri.27536.
[46]
LUO C, YANG J, LIU Z, et al. Predicting the recurrence and overall survival of patients with glioma based on histopathological images using deep learning[J/OL]. Front Neurol, 2023, 14: 1100933 [2023-11-01]. https://pubmed.ncbi.nlm.nih.gov/37064206/. DOI: 10.3389/fneur.2023.1100933.
[47]
QIU J, TAO Z C, DENG K X, et al. Diagnostic accuracy of dynamic contrast-enhanced magnetic resonance imaging for distinguishing pseudoprogression from glioma recurrence: a meta-analysis[J]. Chin Med J (Engl), 2021, 134(21): 2535-2543. DOI: 10.1097/CM9.0000000000001445.
[48]
SHI W, QU C, WANG X, et al. Diffusion kurtosis imaging combined with dynamic susceptibility contrast-enhanced MRI in differentiating high-grade glioma recurrence from pseudoprogression[J/OL]. Eur J Radiol, 2021, 144: 109941 [2023-11-01]. https://pubmed.ncbi.nlm.nih.gov/34735828/. DOI: 10.1016/j.ejrad.2021.109941.
[49]
KIM J Y, PARK J E, JO Y, et al. Incorporating diffusion- and perfusion-weighted MRI into a radiomics model improves diagnostic performance for pseudoprogression in glioblastoma patients[J]. Neuro Oncol, 2019, 21(3): 404-414. DOI: 10.1093/neuonc/noy133.
[50]
PARK Y W, CHOI D, PARK J E, et al. Differentiation of recurrent glioblastoma from radiation necrosis using diffusion radiomics with machine learning model development and external validation[J/OL]. Sci Rep, 2021, 11(1): 2913 [2023-11-01]. https://pubmed.ncbi.nlm.nih.gov/33536499/. DOI: 10.1038/s41598-021-82467-y.
[51]
WANG K, QIAO Z, ZHAO X, et al. Individualized discrimination of tumor recurrence from radiation necrosis in glioma patients using an integrated radiomics-based model[J]. Eur J Nucl Med Mol Imaging, 2020, 47(6): 1400-1411. DOI: 10.1007/s00259-019-04604-0.
[52]
LIN Z, WEN M, YU E, et al. ANXA1 as a prognostic and immune microenvironmental marker for gliomas based on transcriptomic analysis and experimental validation[J/OL]. Front Cell Dev Biol, 2021, 9: 659080 [2023-11-01]. https://pubmed.ncbi.nlm.nih.gov/34422796/. DOI: 10.3389/fcell.2021.659080.
[53]
CHEN A X, GARTRELL R D, ZHAO J, et al. Single-cell characterization of macrophages in glioblastoma reveals MARCO as a mesenchymal pro-tumor marker[J/OL]. Genome Med, 2021, 13(1): 88 [2023-11-01]. https://pubmed.ncbi.nlm.nih.gov/34011400/. DOI: 10.1186/s13073-021-00906-x.
[54]
ZHANG X, LIU S, ZHAO X, et al. Magnetic resonance imaging-based radiomic features for extrapolating infiltration levels of immune cells in lower-grade gliomas[J]. Strahlenther Onkol, 2020, 196(10): 913-921. DOI: 10.1007/s00066-020-01584-1.
[55]
FAN X, LI J, HUANG B, et al. Noninvasive radiomics model reveals macrophage infiltration in glioma[J/OL]. Cancer Lett, 2023, 573: 216380 [2023-11-01]. https://pubmed.ncbi.nlm.nih.gov/37660885/. DOI: 10.1016/j.canlet.2023.216380.
[56]
KIM A R, CHOI K S, KIM M S, et al. Absolute quantification of tumor-infiltrating immune cells in high-grade glioma identifies prognostic and radiomics values[J]. Cancer Immunol Immunother, 2021, 70(7): 1995-2008. DOI: 10.1007/s00262-020-02836-w.
[57]
REHFELD M, MATSCHKE J, HAGEL C, et al. Differential expression of stem cell markers in proliferating cells in glioma[J]. J Cancer Res Clin Oncol, 2021, 147(10): 2969-2982. DOI: 10.1007/s00432-021-03704-5.
[58]
WANG Z H, TANG X P, WU J, et al. Radiomics features based on T2-weighted fluid-attenuated inversion recovery MRI predict the expression levels of CD44 and CD133 in lower-grade gliomas[J]. Future Oncol, 2022, 18(7): 807-819. DOI: 10.2217/fon-2021-1173.
[59]
HATT M, LE REST C C, TIXIER F, et al. Radiomics: Data Are Also Images[J]. J Nucl Med, 2019, 60(Supplement 2): 38S-44S. DOI: 10.2967/jnumed.118.220582.

PREV Progresses of neuroimaging research on neuropathic pain after spinal cord injury
NEXT Research progress of magnetic resonance imaging artificial intelligence technology in the treatment of pituitary neuroendocrine tumors
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn