Share:
Share this content in WeChat
X
Review
Research progress of magnetic resonance imaging artificial intelligence technology in the treatment of pituitary neuroendocrine tumors
WU Jialei  WANG Yubo  LI Xiaofan  LI Yan  TIAN Xubing  ZHANG Yisong  YAN Xun  LUO Da  YANG Bin 

Cite this article as: WU J L, WANG Y B, LI X F, et al. Research progress of magnetic resonance imaging artificial intelligence technology in the treatment of pituitary neuroendocrine tumors[J]. Chin J Magn Reson Imaging, 2024, 15(2): 198-201, 218. DOI:10.12015/issn.1674-8034.2024.02.032.


[Abstract] Pituitary neuroendocrine tumors have high heterogeneity and diverse prognosis. The prognosis varies with different treatment methods. Preoperative prediction of treatment related risks and complications has great significance. Artificial intelligence has been widely used in tumor imaging research, and has achieved remarkable results, and also plays an important role in the diagnosis, treatment and prognosis prediction of pituitary neuroendocrine tumors. This article reviews the progress of artificial intelligence in surgery, medication, and radiation therapy for pituitary neuroendocrine tumors, elaborates on the key role of tumor immune microenvironment in the treatment of pituitary neuroendocrine tumors, explores the application value and limitations of artificial intelligence in the treatment of pituitary neuroendocrine tumors, and provides a foundation for achieving precision medicine of pituitary neuroendocrine tumors.
[Keywords] pituitary neuroendocrine tumors;artificial intelligence;magnetic resonance imaging;tumor immune microenvironment;treatment;prediction

WU Jialei1, 2   WANG Yubo3   LI Xiaofan4   LI Yan4   TIAN Xubing4   ZHANG Yisong4   YAN Xun4   LUO Da4   YANG Bin4*  

1 School of Clinical Medical, Dali University, Dali 671000, China

2 Department of Medical Imaging, Fuwai Yunnan Cardiovascular Hospital, Kunming 650102, China

3 Kunming Medical University, Kunming 650500, China

4 Department of Medical Imaging, the First People's Hospital of Kunming, Kunming 650051, China

Corresponding author: YANG B, E-mail: yangbinapple@163.com

Conflicts of interest   None.

Received  2023-10-13
Accepted  2024-02-02
DOI: 10.12015/issn.1674-8034.2024.02.032
Cite this article as: WU J L, WANG Y B, LI X F, et al. Research progress of magnetic resonance imaging artificial intelligence technology in the treatment of pituitary neuroendocrine tumors[J]. Chin J Magn Reson Imaging, 2024, 15(2): 198-201, 218. DOI:10.12015/issn.1674-8034.2024.02.032.

[1]
TRITOS N A, MILLER K K. Diagnosis and management of pituitary adenomas: A review[J]. JAMA, 2023, 329: 1386-1398. DOI: 10.1001/jama.2023.5444.
[2]
DAI C, SUN B, GUAN S, et al. Evolution of a refractory prolactin-secreting pituitary adenoma into a pituitary carcinoma: report of a challenging case and literature review[J/OL]. BMC Endocr Disord, 2021, 21: 217 [2023-10-13]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8555299. DOI: 10.1186/s12902-021-00874-8.
[3]
CECCATO F, REGAZZO D, BARBOT M, et al. Early recognition of aggressive pituitary adenomas: a single-centre experience[J]. Acta Neurochir (Wien), 2018, 160: 49-55. DOI: 10.1007/s00701-017-3396-5.
[4]
DAI C, KANG J, LIU X, et al. How to classify and define pituitary tumors: recent advances and current controversies[J/OL]. Front Endocrinol (Lausanne), 2021, 12: 604644 [2023-10-13]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8010908. DOI: 10.3389/fendo.2021.604644.
[5]
MELMED S, KAISER U B, LOPES M B, et al. Clinical biology of the pituitary adenoma[J]. Endocr Rev, 2022, 43: 1003-1037. DOI: 10.1210/endrev/bnac010.
[6]
TROUILLAS J, JAFFRAIN-REA M L, VASILJEVIC A, et al. How to classify the pituitary neuroendocrine tumors (PitNET)s in 2020[J/OL]. Cancers (Basel), 2020, 12(2): 514 [2023-10-13]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7072139. DOI: 10.3390/cancers12020514.
[7]
RAVEROT G, ILIE M D, LASOLLE H, et al. Aggressive pituitary tumours and pituitary carcinomas[J]. Nat Rev Endocrinol, 2021, 17: 671-684. DOI: 10.1038/s41574-021-00550-w.
[8]
THOMASIAN N M, KAMEL I R, BAI H X. Machine intelligence in non-invasive endocrine cancer diagnostics[J]. Nat Rev Endocrinol, 2022, 18: 81-95. DOI: 10.1038/s41574-021-00543-9.
[9]
MAYERHOEFER M E, MATERKA A, LANGS G, et al. Introduction to radiomics[J]. J Nucl Med, 2020, 61(4): 488-495. DOI: 10.2967/jnumed.118.222893.
[10]
THOMPSON A C, JAMMAL A A, MEDEIROS F A. A review of deep learning for screening, diagnosis, and detection of glaucoma progression[J/OL].Transl Vis Sci Technol, 2020 [2023-10-13]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7424906. DOI: 10.1167/tvst.9.2.42.
[11]
MCBEE M P, AWAN O A, COLUCCI A T, et al. Deep learning in radiology[J]. Acad Radiol, 2018, 25(11): 1472-1480. DOI: 10.1016/j.acra.2018.02.018.
[12]
CUOCOLO R, UGGA L, SOLARI D, et al. Prediction of pituitary adenoma surgical consistency: radiomic data mining and machine learning on T2-weighted MRI[J]. Neuroradiology, 2020, 62(12): 1649-1656. DOI: 10.1007/s00234-020-02502-z.
[13]
ZEYNALOVA A, KOCAK B, DURMAZ E S, et al. Preoperative evaluation of tumour consistency in pituitary macroadenomas: a machine learning-based histogram analysis on conventional T2-weighted MRI[J]. Neuroradiology, 2019, 61(7): 767-774. DOI: 10.1007/s00234-019-02211-2.
[14]
WAN T, WU C X, MENG M, et al. Radiomic features on multiparametric MRI for preoperative evaluation of pituitary macroadenomas consistency: preliminary findings[J]. J Magn Reson Imaging, 2022, 55(5): 1491-1503. DOI: 10.1002/jmri.27930.
[15]
WANG H, ZHANG W T, LI S, et al. Development and evaluation of deep learning-based automated segmentation of pituitary adenoma in clinical task[J]. J Clin Endocrinol Metab, 2021, 106(9): 2535-2546. DOI: 10.1210/clinem/dgab371.
[16]
NIU J X, ZHANG S T, MA S C, et al. Preoperative prediction of cavernous sinus invasion by pituitary adenomas using a radiomics method based on magnetic resonance images[J]. Eur Radiol, 2019, 29(3): 1625-1634. DOI: 10.1007/s00330-018-5725-3.
[17]
LIU Y Q, GAO B B, DONG B, et al. Preoperative vascular heterogeneity and aggressiveness assessment of pituitary macroadenoma based on dynamic contrast-enhanced MRI texture analysis[J/OL]. Eur J Radiol, 2020 [2023-10-13]. https://pubmed.ncbi.nlm.nih.gov/32593076. DOI: 10.1016/j.ejrad.2020.109125.
[18]
HOLLON T C, PARIKH A, PANDIAN B, et al. A machine learning approach to predict early outcomes after pituitary adenoma surgery[J/OL]. Neurosurg Focus, 2018, 45: E8 [2023-10-13]. https://pubmed.ncbi.nlm.nih.gov/30453460. DOI: 10.3171/2018.8.FOCUS18268.
[19]
VOGLIS S, VAN NIFTRIK C H B, V Eet al STAARTJES. Feasibility of machine learning based predictive modelling of postoperative hyponatremia after pituitary surgery[J]. Pituitary, 2020, 23: 543-551. DOI: 10.1007/s11102-020-01056-w.
[20]
ZANIER O, ZOLI M, STAARTJES V E, et al. Machine learning-based clinical outcome prediction in surgery for acromegaly[J]. Endocrine, 2022, 75: 508-515. DOI: 10.1007/s12020-021-02890-z.
[21]
FANG Y, WANG H, FENG M, et al. Machine-learning prediction of postoperative pituitary hormonal outcomes in nonfunctioning pituitary adenomas: A multicenter study[J/OL]. Front Endocrinol (Lausanne), 2021, 12: 748725 [2023-10-13]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8529112. DOI: 10.3389/fendo.2021.748725.
[22]
TROUILLAS J, ROY P, STURM N, et al. A new prognostic clinicopathological classification of pituitary adenomas: a multicentric case-control study of 410 patients with 8 years post-operative follow-up[J]. Acta Neuropathol, 2013, 126: 123-135. DOI: 10.1007/s00401-013-1084-y.
[23]
FAN Y, CHAI Y, LI K et al. Non-invasive and real-time proliferative activity estimation based on a quantitative radiomics approach for patients with acromegaly: a multicenter study[J]. J Endocrinol Invest, 2020, 43: 755-765. DOI: 10.1007/s40618-019-01159-7.
[24]
UGGA L, CUOCOLO R, SOLARI D, et al. Prediction of high proliferative index in pituitary macroadenomas using MRI-based radiomics and machine learning[J]. Neuroradiology, 2019, 61(12): 1365-1373. DOI: 10.1007/s00234-019-02266-1.
[25]
MACHADO L F, ELIAS P C L, MOREIRA A C, et al. MRI radiomics for the prediction of recurrence in patients with clinically non-functioning pituitary macroadenomas[J/OL]. Comput Biol Med, 2020, 124: 103966 [2023-10-13]. https://pubmed.ncbi.nlm.nih.gov/32860977. DOI: 10.1016/j.compbiomed.2020.103966.
[26]
ZHANG Y, LUO Y Q, KONG X, et al. A preoperative MRI-based radiomics-clinicopathological classifier to predict the recurrence of pituitary macroadenoma within 5 Years[J/OL]. Front Neurol, 2021, 12: 780628 [2023-10-13]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8767054. DOI: 10.3389/fneur.2021.780628.
[27]
NADEZHDINA E Y, REBROVA O Y, GRIGORIEV A Y, et al. Prediction of recurrence and remission within 3 years in patients with cushing disease after successful transnasal adenomectomy[J]. Pituitary, 2019, 22: 574-580. DOI: 10.1007/s11102-019-00985-5.
[28]
FAN Y H, LI Y S, LI Y C, et al. Development and assessment of machine learning algorithms for predicting remission after transsphenoidal surgery among patients with acromegaly[J]. Endocrine, 2020, 67: 412-422. DOI: 10.1007/s12020-019-02121-6.
[29]
SHAHRESTANI S, CARDINAL T, MICKO A, et al. Neural network modeling for prediction of recurrence, progression, and hormonal non-remission in patients following resection of functional pituitary adenomas[J]. Pituitary, 2021, 24: 523-529. DOI: 10.1007/s11102-021-01128-5.
[30]
KIM M, KIM H S, KIM H J, et al. Thin-slice pituitary MRI with deep learning-based reconstruction: diagnostic performance in a postoperative setting[J]. Radiology, 2021, 298: 114-122. DOI: 10.1148/radiol.2020200723.
[31]
PAN Y Y, YU Y D, WANG X J, et al. Tumor-associated macrophages in tumor immunity[J/OL]. Front Immunol, 2020, 11: 583084 [2023-10-13]. https://pubmed.ncbi.nlm.nih.gov/33365025. DOI: 10.3389/fimmu.2020.583084.
[32]
NG T S C, GUNDA V, LI R, et al. Detecting immune response to therapies targeting PDL1 and BRAF by using ferumoxytol MRI and macrin in anaplastic thyroid cancer[J]. Radiology, 2021, 298: 123-132. DOI: 10.1148/radiol.2020201791.
[33]
NISHINO M, HATABU H, HODI F S. Imaging of cancer immunotherapy: Current approaches and future directions[J]. Radiology, 2019, 290: 9-22. DOI: 10.1148/radiol.2018181349.
[34]
RAMANATHAN R K, KORN R L, RAGHUNAND N, et al. Correlation between ferumoxytol uptake in tumor lesions by MRI and response to nanoliposomal irinotecan in patients with advanced solid tumors: A pilot study[J]. Clin Cancer Res, 2017, 23: 3638-3648. DOI: 10.1158/1078-0432.CCR-16-1990.
[35]
JOHNSON J, GOLDNER W, ABDALLAH D, et al. TEST ARTICLE: Hypophysitis and secondary adrenal insufficiency from immune checkpoint inhibitors: Diagnostic challenges and link with survival[J]. J Natl Compr Canc Netw, 2023, 21(3): 281-287. DOI: 10.6004/jnccn.9999.9999.
[36]
WRIGHT J J, POWERS A C, JOHNSON D B. Endocrine toxicities of immune checkpoint inhibitors[J]. Nat Rev Endocrinol, 2021, 17: 389-399. DOI: 10.1038/s41574-021-00484-3.
[37]
FUKUDA I. Immune checkpoint inhibitors and associated pituitary dysfunctions: A mini-review[J]. J Nippon Med Sch, 2023, 90: 149-156. DOI: 10.1272/jnms.JNMS.2023_90-215.
[38]
PARK Y W, EOM J, KIM S, et al. Radiomics with ensemble machine learning predicts dopamine agonist response in patients with prolactinoma[J/OL]. J Clin Endocrinol Metab, 2021, 106: e3069-e3077 [2023-10-13]. https://pubmed.ncbi.nlm.nih.gov/33713414. DOI: 10.1210/clinem/dgab159.
[39]
FAN Y H, LIU Z Y, HOU B, et al. Development and validation of an MRI-based radiomic signature for the preoperative prediction of treatment response in patients with invasive functional pituitary adenoma[J/OL]. Eur J Radiol, 2019, 121: 108647 [2023-10-13]. https://pubmed.ncbi.nlm.nih.gov/31561943. DOI: 10.1016/j.ejrad.2019.108647.
[40]
KOCAK B, DURMAZ E S, KADIOGLU P, et al. Predicting response to somatostatin analogues in acromegaly: machine learning-based high-dimensional quantitative texture analysis on T2-weighted MRI[J]. Eur Radiol, 2019, 29: 2731-2739. DOI: 10.1007/s40618-018-0988-8.
[41]
SUN R, LIMKIN E J, VAKALOPOULOU M, et al. A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort study[J]. Lancet Oncol, 2018, 19: 1180-1191. DOI: 10.1016/S1470-2045(18)30413-3.
[42]
HAMBLIN R, VARDON A, AKPALU J, et al. Risk of second brain tumour after radiotherapy for pituitary adenoma or craniopharyngioma: a retrospective, multicentre, cohort study of 3679 patients with long-term imaging surveillance[J]. Lancet Diabetes Endocrinol, 2022, 10: 581-588. DOI: 10.1016/S2213-8587(22)00160-7.
[43]
FAN Y H, JIANG S Z, HUA M, et al. Machine learning-based radiomics predicts radiotherapeutic response in patients with acromegaly[J/OL]. Front Endocrinol (Lausanne), 2019, 10: 588 [2023-10-13]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6718446. DOI: 10.3389/fendo.2019.00588.

PREV Research progression of MRI radiomics in glioma
NEXT The progress and status of MRI in post concussion syndrome
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn